A new space technology for ocean observation: the SMOS mission

SUMMARY: Capability for sea surface salinity observation was an important gap in ocean remote sensing in the last few decades of the 20 th century. New technological developments during the 1990s at the European Space Agency led to the proposal of SMOS (Soil Moisture and Ocean Salinity), an Earth explorer opportunity mission based on the use of a microwave interferometric radiometer, MIRAS (Microwave Imaging Radiometer with Aperture Synthesis). SMOS, the first satellite ever addressing the observation of ocean salinity from space, was successfully launched in November 2009. The determination of salinity from the MIRAS radiometric measurements at 1.4 GHz is a complex procedure that requires high performance from the instrument and accurate modelling of several physical processes that impact on the microwave emission of the ocean’s surface. This paper introduces SMOS in the ocean remote sensing context, and summarizes the MIRAS principles of operation and the SMOS salinity retrieval approach. It describes the Spanish SMOS high-level data processing centre (CP34) and the SMOS Barcelona Expert Centre on Radiometric Calibration and Ocean Salinity (SMOSBEC), and presents a preliminary validation of global sea surface salinity maps operationally produced by CP34.

[1]  Jacqueline Boutin,et al.  SMOS first data analysis for sea surface salinity determination , 2013 .

[2]  Carolina Gabarró,et al.  SMOS Semi-Empirical Ocean Forward Model Adjustment , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Jacqueline Boutin,et al.  First Assessment of SMOS Data Over Open Ocean: Part II—Sea Surface Salinity , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Jacqueline Boutin,et al.  Resolving the global surface salinity field and variations by blending satellite and in situ observations , 2010 .

[5]  Yann Kerr,et al.  SMOS: The Challenging Sea Surface Salinity Measurement From Space , 2010, Proceedings of the IEEE.

[6]  Yann Kerr,et al.  The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle , 2010, Proceedings of the IEEE.

[7]  Jordi Font,et al.  SMOS and Aquarius/SAC-D Missions: The Era of Spaceborne Salinity Measurements is About to Begin , 2010 .

[8]  Oceans from Space, a Once-a-Decade Review of Progress: Satellite Oceanography in a Changing World , 2010 .

[9]  Jordi Font,et al.  A new buoy for measurement and real time transmission of surface salinity , 2010 .

[10]  Antonio Turiel,et al.  The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines , 2009 .

[11]  Peter R. Oke,et al.  High-Resolution Global and Basin-Scale Ocean Analyses and Forecasts , 2009 .

[12]  Yann Kerr,et al.  Exploring the water cycle of the blue planet. The Soil Moisture and Ocean Salinity Mission , 2009 .

[13]  OcEAN ANAlySES,et al.  HiGH-rESOlutiON GlObAl AND bASiN-ScAlE OcEAN ANAlySES AND FOrEcAStS , 2009 .

[14]  Adriano Camps,et al.  Microwave aperture synthesis radiometry: Paving the path for sea surface salinity measurement from space , 2008 .

[15]  Simon Yueh,et al.  The Aquarius/SAC-D mission: Designed to meet the salinity remote-sensing challenge , 2008 .

[16]  Ignasi Corbella,et al.  SMOS Calibration , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Manuel Martín-Neira,et al.  SMOS: The Payload , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Jacqueline Boutin,et al.  Overview of the SMOS Sea Surface Salinity Prototype Processor , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Jacqueline Boutin,et al.  ARGO upper salinity measurements: perspectives for L-band radiometers calibration and retrieved sea surface salinity validation , 2006, IEEE Geoscience and Remote Sensing Letters.

[20]  Adriano Camps,et al.  The determination of surface salinity with the European SMOS space mission , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Adriano Camps,et al.  The visibility function in interferometric aperture synthesis radiometry , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Luis Enrique,et al.  The WISE 2000 and 2001 field experiments in support of the SMOS mission: sea surface L-band brightness temperature observations and their application to sea surface salinity retrieval , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Ignasi Corbella,et al.  A calibration method for fully polarimetric microwave radiometers , 2003, IEEE Trans. Geosci. Remote. Sens..

[24]  Manuel Martín-Neira,et al.  Polarimetric mode of MIRAS , 2002, IEEE Trans. Geosci. Remote. Sens..

[25]  Timothy P. Boyer,et al.  World ocean atlas 2013. Volume 2, Salinity , 2002 .

[26]  Yann Kerr,et al.  Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission , 2001, IEEE Trans. Geosci. Remote. Sens..

[27]  Simon Yueh,et al.  Error sources and feasibility for microwave remote sensing of ocean surface salinity , 2001, IEEE Trans. Geosci. Remote. Sens..

[28]  G. Lagerloef,et al.  Satellite Measurements of Salinity , 2001 .

[29]  N. R. Smith,et al.  The Global Ocean Data Assimilation Experiment , 2000 .

[30]  S. Sandven,et al.  ERS-2 SAR near real time data used in the sampling strategy of an oceanographic cruise in the Western Mediterranean , 1997 .

[31]  C. Ruf,et al.  Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth , 1988 .

[32]  Calvin T. Swift,et al.  Considerations for Microwave Remote Sensing of Ocean-Surface Salinity , 1983, IEEE Transactions on Geoscience and Remote Sensing.

[33]  J. C. Good,et al.  Aperture synthesis for microwave radiometers in space , 1983 .

[34]  Allan R. Robinson,et al.  Eddies in marine science , 1983 .

[35]  G. Born,et al.  Seasat Mission Overview , 1979, Science.

[36]  C. Swift,et al.  An improved model for the dielectric constant of sea water at microwave frequencies , 1977, IEEE Journal of Oceanic Engineering.