Dynamic mode decomposition in adaptive mesh refinement and coarsening simulations

Dynamic mode decomposition (DMD) is a powerful data-driven method used to extract spatio-temporal coherent structures that dictate a given dynamical system. The method consists of stacking collected temporal snapshots into a matrix and mapping the nonlinear dynamics using a linear operator. The classical procedure considers that snapshots possess the same dimensionality for all the observable data. However, this often does not occur in numerical simulations with adaptive mesh refinement/coarsening schemes (AMR/C). This paper proposes a strategy to enable DMD to extract features from observations with different mesh topologies and dimensions, such as those found in AMR/C simulations. For this purpose, the adaptive snapshots are projected onto the same reference function space, enabling the use of snapshot-based methods such as DMD. The present strategy is applied to challenging AMR/C simulations: a continuous diffusion–reaction epidemiological model for COVID-19, a density-driven gravity current simulation, and a bubble rising problem. We also evaluate the DMD efficiency to reconstruct the dynamics and some relevant quantities of interest. In particular, for the SEIRD model and the bubble rising problem, we evaluate DMD’s ability to extrapolate in time (short-time future estimates).

[1]  Jens Lang,et al.  POD-Galerkin reduced-order modeling with adaptive finite element snapshots , 2016, J. Comput. Phys..

[2]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[3]  Peter J. Schmid,et al.  Sparsity-promoting dynamic mode decomposition , 2012, 1309.4165.

[4]  Peter J. Schmid,et al.  Application of the dynamic mode decomposition to experimental data , 2011 .

[5]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[6]  Steven L. Brunton,et al.  Data-Driven Science and Engineering , 2019 .

[7]  T. Rabczuk,et al.  A Deep Collocation Method for the Bending Analysis of Kirchhoff Plate , 2021, Computers, Materials & Continua.

[8]  Timothy C. Warburton,et al.  Extreme-Scale AMR , 2010, 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis.

[9]  Habib N. Najm,et al.  Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence , 2018 .

[10]  Matthew O. Williams,et al.  A kernel-based method for data-driven koopman spectral analysis , 2016 .

[11]  Alvaro L. G. A. Coutinho,et al.  Numerical simulation of particle‐laden flows by the residual‐based variational multiscale method , 2013 .

[12]  Hengyang Li,et al.  Image-based modelling for Adolescent Idiopathic Scoliosis: Mechanistic machine learning analysis and prediction , 2021, Computer Methods in Applied Mechanics and Engineering.

[13]  Ross A. Thompson Galerkin Projections Between Finite Element Spaces , 2015 .

[14]  Rainald Lhner Applied Computational Fluid Dynamics Techniques , 2008 .

[15]  R. Codina,et al.  Variational Multiscale Methods in Computational Fluid Dynamics , 2016 .

[16]  Vassilios Theofilis,et al.  Modal Analysis of Fluid Flows: An Overview , 2017, 1702.01453.

[17]  L. Sirovich Turbulence and the dynamics of coherent structures. II. Symmetries and transformations , 1987 .

[18]  M. Mildner,et al.  Re-epithelialization and immune cell behaviour in an ex vivo human skin model , 2020, Scientific Reports.

[19]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[20]  Benjamin S. Kirk,et al.  Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .

[21]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[22]  Alessandro Alla,et al.  Understanding Mass Transfer Directions via Data-Driven Models with Application to Mobile Phone Data , 2019, SIAM J. Appl. Dyn. Syst..

[23]  Steven L. Brunton,et al.  Compressed dynamic mode decomposition for background modeling , 2015, Journal of Real-Time Image Processing.

[24]  Thomas Peters,et al.  Data-driven science and engineering: machine learning, dynamical systems, and control , 2019, Contemporary Physics.

[25]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[26]  T. Coupez,et al.  Convected level set method for the numerical simulation of fluid buckling , 2011 .

[27]  Steven L. Brunton,et al.  Randomized Matrix Decompositions using R , 2016, Journal of Statistical Software.

[28]  Steven L. Brunton,et al.  Multiresolution Dynamic Mode Decomposition , 2015, SIAM J. Appl. Dyn. Syst..

[29]  Y. Zhang,et al.  Reaction diffusion system prediction based on convolutional neural network , 2020, Scientific Reports.

[30]  Steven L. Brunton,et al.  Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization , 2021, Proceedings of the Royal Society A.

[31]  Paris Perdikaris,et al.  Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations , 2019, J. Comput. Phys..

[32]  Joshua L. Proctor,et al.  Discovering dynamic patterns from infectious disease data using dynamic mode decomposition , 2015, International health.

[33]  C. C. Pain,et al.  Reduced‐order modelling of an adaptive mesh ocean model , 2009 .

[34]  Steven L. Brunton,et al.  Compressed sensing and dynamic mode decomposition , 2016 .

[35]  Volker John,et al.  A Review of Variational Multiscale Methods for the Simulation of Turbulent Incompressible Flows , 2015 .

[36]  Graham F. Carey,et al.  Locally constrained projections on grids , 2001 .

[37]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[38]  Volker Gravemeier,et al.  Recent Developments in Variational Multiscale Methods for Large-Eddy Simulation of Turbulent Flow , 2018 .

[39]  David L. Donoho,et al.  The Optimal Hard Threshold for Singular Values is 4/sqrt(3) , 2013, 1305.5870.

[40]  A. Coutinho,et al.  A new convected level-set method for gas bubble dynamics , 2020 .

[41]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[42]  Petros Koumoutsakos,et al.  Machine Learning for Fluid Mechanics , 2019, Annual Review of Fluid Mechanics.

[43]  Ramon Codina,et al.  Interpolation with restrictions between finite element meshes for flow problems in an ALE setting , 2017 .

[44]  Manish Sharma,et al.  Mathematical Models on Epidemiology , 2015 .

[45]  T. Coupez Convection Of Local Level Set Function For Moving Surfaces And Interfaces In Forming Flow , 2007 .

[46]  Steven L. Brunton,et al.  Data-driven nonlinear aeroelastic models of morphing wings for control , 2020, Proceedings of the Royal Society A.

[47]  Thomas E. Yankeelov,et al.  Diffusion–reaction compartmental models formulated in a continuum mechanics framework: application to COVID-19, mathematical analysis, and numerical study , 2020, Computational mechanics.

[48]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[49]  Thomas J. R. Hughes,et al.  Multiscale and Stabilized Methods , 2007 .

[50]  J. Vencovský,et al.  Plasma Hsp90 levels in patients with systemic sclerosis and relation to lung and skin involvement: a cross-sectional and longitudinal study , 2021, Scientific Reports.

[51]  Alvaro L. G. A. Coutinho,et al.  Adaptive mesh refinement and coarsening for diffusion–reaction epidemiological models , 2020, Computational Mechanics.

[52]  Stéphane Bordas,et al.  A hyper-reduction method using adaptivity to cut the assembly costs of reduced order models , 2021, Computer Methods in Applied Mechanics and Engineering.

[53]  D. Donoho,et al.  The Optimal Hard Threshold for Singular Values is 4 / √ 3 , 2013 .

[54]  C'edric Herzet,et al.  Low-Rank Dynamic Mode Decomposition: Optimal Solution in Polynomial-Time , 2016 .

[55]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[56]  Thomas E. Yankeelov,et al.  Simulating the spread of COVID-19 via a spatially-resolved susceptible–exposed–infected–recovered–deceased (SEIRD) model with heterogeneous diffusion , 2020, Applied Mathematics Letters.

[57]  Amir Barati Farimani,et al.  Deep learning of material transport in complex neurite networks , 2021, Scientific Reports.

[58]  Michael Hinze,et al.  POD reduced-order modeling for evolution equations utilizing arbitrary finite element discretizations , 2017, Advances in Computational Mathematics.

[59]  Guillaume Houzeaux,et al.  Dynamic Mode Decomposition Analysis of High-Fidelity CFD Simulations of the Sinus Ventilation , 2020 .

[60]  Carlos Castillo-Chavez,et al.  Mathematical Models in Epidemiology , 2019, Texts in Applied Mathematics.

[61]  Marco Donatelli,et al.  Generalized grid transfer operators for multigrid methods applied on Toeplitz matrices , 2015 .

[62]  Patrick E. Farrell,et al.  Conservative interpolation between volume meshes by local Galerkin projection , 2011 .

[63]  J. R. Maddison,et al.  Optimal Constrained Interpolation in Mesh-Adaptive Finite Element Modeling , 2017, SIAM J. Sci. Comput..

[64]  R. Krause,et al.  A Study of Prolongation Operators Between Non-nested Meshes , 2011 .

[65]  Steven L. Brunton,et al.  Dynamic mode decomposition - data-driven modeling of complex systems , 2016 .

[66]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[67]  M. Rivara Mesh Refinement Processes Based on the Generalized Bisection of Simplices , 1984 .

[68]  Leonhard Kleiser,et al.  High-resolution simulations of particle-driven gravity currents , 2002 .

[69]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[70]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[71]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[72]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .