About the amplification factors in organic bioelectronic sensors

A systematic comparison between electrochemical and organic bioelectronic sensors reveals a unified rational description for a transistor amplified detection.

[1]  L. C. Clark,et al.  ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY , 1962 .

[2]  M. Cluett Effect of Input Resistance on Potentiometric Titrations in Nonaqueous Solvents. , 1964 .

[3]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[4]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[5]  Henry S. White,et al.  Chemical derivatization of an array of three gold microelectrodes with polypyrrole: Fabrication of a molecule-based transistor , 1984 .

[6]  C. Malitesta,et al.  Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film. , 1990, Analytical chemistry.

[7]  H. Gerischer The impact of semiconductors on the concepts of electrochemistry , 1990 .

[8]  Piet Bergveld,et al.  Possibilities and limitations of direct detection of protein charges by means of an immunological field-effect transistor , 1990 .

[9]  D. Centonze,et al.  Amperometric biosensors based on electrosynthesised polymeric films , 2000, Fresenius' journal of analytical chemistry.

[10]  G. S. Wilson,et al.  Electrochemical biosensors: recommended definitions and classification. , 2001, Biosensors & bioelectronics.

[11]  Piet Bergveld,et al.  Thirty years of ISFETOLOGY ☆: What happened in the past 30 years and what may happen in the next 30 years , 2003 .

[12]  Changcheng Zhu,et al.  A simple poly(3,4-ethylene dioxythiophene)/poly(styrene sulfonic acid) transistor for glucose sensing at neutral pH. , 2004, Chemical communications.

[13]  A. Turner,et al.  Home blood glucose biosensors: a commercial perspective. , 2005, Biosensors & bioelectronics.

[14]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[15]  Michael J. Schöning,et al.  Bio FEDs (Field‐Effect Devices): State‐of‐the‐Art and New Directions , 2006 .

[16]  N. Jaffrezic‐Renault,et al.  Enzyme biosensors based on ion-selective field-effect transistors. , 2006, Analytica chimica acta.

[17]  A. Ivaska,et al.  Potentiometric ion sensors. , 2008, Chemical reviews.

[18]  Joseph Wang Electrochemical glucose biosensors. , 2008, Chemical reviews.

[19]  J. Vörös,et al.  Electrochemical Biosensors - Sensor Principles and Architectures , 2008 .

[20]  Johan Bobacka,et al.  Ion‐Selective Organic Electrochemical Junction Transistors Based on Poly(3,4‐ethylenedioxythiophene) Doped with Poly(styrene sulfonate) , 2009 .

[21]  Niina J. Ronkainen,et al.  Electrochemical biosensors. , 2010, Chemical Society reviews.

[22]  Magnus Berggren,et al.  Ion bipolar junction transistors , 2010, Proceedings of the National Academy of Sciences.

[23]  George G. Malliaras,et al.  Effect of the gate electrode on the response of organic electrochemical transistors , 2010 .

[24]  Feng Yan,et al.  Organic Electrochemical Transistors Integrated in Flexible Microfluidic Systems and Used for Label‐Free DNA Sensing , 2011, Advanced materials.

[25]  Feng Yan,et al.  Highly Sensitive Glucose Biosensors Based on Organic Electrochemical Transistors Using Platinum Gate Electrodes Modified with Enzyme and Nanomaterials , 2011 .

[26]  Bernard P. Puc,et al.  An integrated semiconductor device enabling non-optical genome sequencing , 2011, Nature.

[27]  Feng Yan,et al.  Organic Thin‐Film Transistors for Chemical and Biological Sensing , 2012, Advanced materials.

[28]  Tai Hyun Park,et al.  Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. , 2012, Nano letters.

[29]  Marianna Ambrico,et al.  Phospholipid film in electrolyte-gated organic field-effect transistors , 2012 .

[30]  Meng Zhang,et al.  Detection of bacteria with organic electrochemical transistors , 2012 .

[31]  A. Bard,et al.  Observation of single metal nanoparticle collisions by open circuit (mixed) potential changes at an ultramicroelectrode. , 2012, Journal of the American Chemical Society.

[32]  N. Lee,et al.  Electrical graphene aptasensor for ultra-sensitive detection of anthrax toxin with amplified signal transduction. , 2013, Small.

[33]  Kyriaki Manoli,et al.  Organic field-effect transistor sensors: a tutorial review. , 2013, Chemical Society reviews.

[34]  Se Hyun Kim,et al.  Electrolyte‐Gated Transistors for Organic and Printed Electronics , 2013, Advanced materials.

[35]  Tobias Cramer,et al.  Organic field-effect transistor for label-free dopamine sensing , 2013 .

[36]  Sergey A. Piletsky,et al.  Solid‐Phase Synthesis of Molecularly Imprinted Polymer Nanoparticles with a Reusable Template–“Plastic Antibodies” , 2013, Advanced functional materials.

[37]  Róisín M. Owens,et al.  The organic electrochemical transistor for biological applications , 2015 .

[38]  Mohammad Yusuf Mulla,et al.  Capacitance-modulated transistor detects odorant binding protein chiral interactions , 2015, Nature Communications.

[39]  Kyriaki Manoli,et al.  Printable Bioelectronics To Investigate Functional Biological Interfaces. , 2015, Angewandte Chemie.

[40]  Feng Yan,et al.  Flexible Organic Electrochemical Transistors for Highly Selective Enzyme Biosensors and Used for Saliva Testing , 2015, Advanced materials.

[41]  Christophe Bernard,et al.  High-performance transistors for bioelectronics through tuning of channel thickness , 2015, Science Advances.

[42]  A. Stein,et al.  Rational design of all-solid-state ion-selective electrodes and reference electrodes , 2016 .

[43]  Anthony P. F. Turner,et al.  Electrocatalytic Currents from Single Enzyme Molecules. , 2016, Journal of the American Chemical Society.

[44]  Aram Amassian,et al.  Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors , 2016, Journal of the American Chemical Society.

[45]  Magnus Berggren,et al.  Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. , 2016, Chemical Reviews.

[46]  S. Piletsky,et al.  Solid-phase synthesis of molecularly imprinted nanoparticles , 2016, Nature Protocols.

[47]  Frieder W. Scheller,et al.  Electrosynthesized molecularly imprinted polymers for protein recognition , 2016 .

[48]  Matti Kaisti,et al.  Detection principles of biological and chemical FET sensors. , 2017, Biosensors & bioelectronics.

[49]  A. Bard,et al.  Ultra-Sensitive Potentiometric Measurements of Dilute Redox Molecule Solutions and Determination of Sensitivity Factors at Platinum Ultramicroelectrodes. , 2017, Analytical chemistry.

[50]  Wei Qin,et al.  Mussel-Inspired Surface-Imprinted Sensors for Potentiometric Label-Free Detection of Biological Species. , 2017, Angewandte Chemie.

[51]  Anna-Maria Pappa,et al.  Lactate Detection in Tumor Cell Cultures Using Organic Transistor Circuits , 2017, Advanced materials.

[52]  X. Crispin,et al.  Article type : Full Paper Understanding the capacitance of PEDOT : PSS , 2017 .

[53]  G. Malliaras,et al.  Redox‐Stability of Alkoxy‐BDT Copolymers and their Use for Organic Bioelectronic Devices , 2018 .

[54]  E. Scavetta,et al.  All poly(3,4-ethylenedioxythiophene) organic electrochemical transistor to amplify amperometric signals , 2018 .

[55]  Zhenan Bao,et al.  Skin-Inspired Electronics: An Emerging Paradigm. , 2018, Accounts of chemical research.

[56]  Gaetano Scamarcio,et al.  Single-molecule detection with a millimetre-sized transistor , 2018, Nature Communications.

[57]  Armantas Melianas,et al.  Organic electronics for neuromorphic computing , 2018, Nature Electronics.

[58]  Z. Kovács-Vajna,et al.  Ultra-sensitive protein detection with organic electrochemical transistors printed on plastic substrates , 2018, Flexible and Printed Electronics.

[59]  E. Stavrinidou,et al.  Organic mixed ionic–electronic conductors , 2019, Nature Materials.

[60]  X. Crispin,et al.  Ion Electron–Coupled Functionality in Materials and Devices Based on Conjugated Polymers , 2019, Advanced materials.

[61]  N. Cioffi,et al.  Ultimately Sensitive Organic Bioelectronic Transistor Sensors by Materials and Device Structure Design , 2019, Advanced Functional Materials.

[62]  M. Berggren,et al.  How conducting polymer electrodes operate , 2019, Science.

[63]  Gaetano Scamarcio,et al.  Label-Free and Selective Single-Molecule Bioelectronic Sensing with a Millimeter-Wide Self-Assembled Monolayer of Anti-Immunoglobulins , 2019, Chemistry of Materials.

[64]  Gaetano Scamarcio,et al.  Selective single-molecule analytical detection of C-reactive protein in saliva with an organic transistor , 2019, Analytical and Bioanalytical Chemistry.

[65]  E. Zdrachek,et al.  Potentiometric Sensing. , 2018, Analytical chemistry.

[66]  M. Grell,et al.  Electrochemical gating of a hydrophobic organic semiconductor with aqueous media , 2019, Thin Solid Films.

[67]  Gaetano Scamarcio,et al.  Ultra-low HIV-1 p24 detection limits with a bioelectronic sensor , 2019, Analytical and Bioanalytical Chemistry.

[68]  Z. Kovács-Vajna,et al.  Ion buffering and interface charge enable high performance electronics with organic electrochemical transistors , 2019, Nature Communications.