Introducing a weighted non-negative matrix factorization for image classification

[1]  Hiroshi Murase,et al.  Visual learning and recognition of 3-d objects from appearance , 2005, International Journal of Computer Vision.

[2]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[3]  Jordi Vitrià,et al.  Analyzing non-negative matrix factorization for image classification , 2002, Object recognition supported by user interaction for service robots.

[4]  Jordi Vitrià,et al.  Determining a suitable metric when using non-negative matrix factorization , 2002, Object recognition supported by user interaction for service robots.

[5]  Jordi Vitrià,et al.  Non-negative Matrix Factorization for Face Recognition , 2002, CCIA.

[6]  G. Buchsbaum,et al.  Color categories revealed by non-negative matrix factorization of Munsell color spectra , 2002, Vision Research.

[7]  Jordi Vitrià,et al.  A weighted non-negative matrix factorization for local representations , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[8]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[9]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[10]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.