On periodically iterated morphisms

We investigate the computational power of periodically iterated morphisms, also known as D0L systems with periodic control; we call them PerD0L systems for short. These systems give rise to a class of one-sided infinite sequences, called PerD0L words. We construct a PerD0L word with exponential subword complexity, thereby answering a question raised by Lepistö [23] on the existence of such words. We solve another open problem concerning the decidability of the first-order theories of PerD0L words [24]; we show it is already undecidable whether a certain letter occurs in a PerD0L word.

[1]  C.-H. Luke Ong,et al.  On Model-Checking Trees Generated by Higher-Order Recursion Schemes , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[2]  Andrej Muchnik,et al.  Sequences close to periodic , 2009, ArXiv.

[3]  Andrzej Ehrenfeucht,et al.  Subword Complexities of Various Classes of Deterministic Developmental Languages without Interactions , 1975, Theor. Comput. Sci..

[4]  Alfred J. van der Poorten,et al.  Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..

[5]  Jörg Endrullis,et al.  Data-Oblivious Stream Productivity , 2008, LPAR.

[6]  Juhani Karhumäki,et al.  Alternating Iteration of Morphisms and the Kolakovski Sequence , 1992 .

[7]  Karel Culik,et al.  Iterative Devices Generating Infinite Words , 1992, STACS.

[8]  J. H. Conway FRACTRAN: A Simple Universal Programming Language for Arithmetic , 1987 .

[9]  Jan Willem Klop,et al.  Degrees of Streams , 2011, Integers.

[10]  M. Keane,et al.  0-1-sequences of Toeplitz type , 1969 .

[11]  Patrice Séébold,et al.  On some generalizations of the Thue-Morse morphism , 2003, Theor. Comput. Sci..

[12]  Rufus Oldenburger Exponent trajectories in symbolic dynamics , 1939 .

[13]  Lawrence S. Moss,et al.  Automatic Sequences and Zip-Specifications , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[14]  Arto Lepistö,et al.  On the Power of Periodic Iteration of Morphisms , 1993, ICALP.

[15]  Jan Willem Klop,et al.  Productivity of stream definitions , 2007, Theor. Comput. Sci..

[16]  Ben A. Sijtsma,et al.  On the productivity of recursive list definitions , 1989, ACM Trans. Program. Lang. Syst..

[17]  Jörg Endrullis,et al.  Lazy productivity via termination , 2011, Theor. Comput. Sci..

[18]  Jörg Endrullis,et al.  Complexity of Fractran and Productivity , 2009, CADE.

[19]  Joaquim Gabarró,et al.  Iterated GSMs and Co-CFL , 1989, Acta Informatica.

[20]  Jean Berstel,et al.  Mots sans carre et morphismes iteres , 1980, Discret. Math..

[21]  Olivier Carton,et al.  The Monadic Theory of Morphic Infinite Words and Generalizations , 2000, Inf. Comput..

[22]  Jean-Paul Allouche,et al.  Sur la complexite des suites in nies , 1994 .

[23]  Sébastien Ferenczi,et al.  Complexity of sequences and dynamical systems , 1999, Discret. Math..

[24]  Tero Harju,et al.  The ω sequence problem for DOL systems is decidable , 1984, JACM.

[25]  Juhani Karhumäki,et al.  Toeplitz Words, Generalized Periodicity and Periodically Iterated Morphisms , 1997, Eur. J. Comb..