On periodically iterated morphisms
暂无分享,去创建一个
[1] C.-H. Luke Ong,et al. On Model-Checking Trees Generated by Higher-Order Recursion Schemes , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).
[2] Andrej Muchnik,et al. Sequences close to periodic , 2009, ArXiv.
[3] Andrzej Ehrenfeucht,et al. Subword Complexities of Various Classes of Deterministic Developmental Languages without Interactions , 1975, Theor. Comput. Sci..
[4] Alfred J. van der Poorten,et al. Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..
[5] Jörg Endrullis,et al. Data-Oblivious Stream Productivity , 2008, LPAR.
[6] Juhani Karhumäki,et al. Alternating Iteration of Morphisms and the Kolakovski Sequence , 1992 .
[7] Karel Culik,et al. Iterative Devices Generating Infinite Words , 1992, STACS.
[8] J. H. Conway. FRACTRAN: A Simple Universal Programming Language for Arithmetic , 1987 .
[9] Jan Willem Klop,et al. Degrees of Streams , 2011, Integers.
[10] M. Keane,et al. 0-1-sequences of Toeplitz type , 1969 .
[11] Patrice Séébold,et al. On some generalizations of the Thue-Morse morphism , 2003, Theor. Comput. Sci..
[12] Rufus Oldenburger. Exponent trajectories in symbolic dynamics , 1939 .
[13] Lawrence S. Moss,et al. Automatic Sequences and Zip-Specifications , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.
[14] Arto Lepistö,et al. On the Power of Periodic Iteration of Morphisms , 1993, ICALP.
[15] Jan Willem Klop,et al. Productivity of stream definitions , 2007, Theor. Comput. Sci..
[16] Ben A. Sijtsma,et al. On the productivity of recursive list definitions , 1989, ACM Trans. Program. Lang. Syst..
[17] Jörg Endrullis,et al. Lazy productivity via termination , 2011, Theor. Comput. Sci..
[18] Jörg Endrullis,et al. Complexity of Fractran and Productivity , 2009, CADE.
[19] Joaquim Gabarró,et al. Iterated GSMs and Co-CFL , 1989, Acta Informatica.
[20] Jean Berstel,et al. Mots sans carre et morphismes iteres , 1980, Discret. Math..
[21] Olivier Carton,et al. The Monadic Theory of Morphic Infinite Words and Generalizations , 2000, Inf. Comput..
[22] Jean-Paul Allouche,et al. Sur la complexite des suites in nies , 1994 .
[23] Sébastien Ferenczi,et al. Complexity of sequences and dynamical systems , 1999, Discret. Math..
[24] Tero Harju,et al. The ω sequence problem for DOL systems is decidable , 1984, JACM.
[25] Juhani Karhumäki,et al. Toeplitz Words, Generalized Periodicity and Periodically Iterated Morphisms , 1997, Eur. J. Comb..