Acoustic classification of zooplankton

Accurate acoustic characterization of zooplankton species is essential if reliable estimates of zooplankton biomass are to be made from acoustic backscatter measurements of the water column. Much work has recently been done on the forward problem, where scattering predictions have been made based on animal morphology. Three categories of scatterers, represented by theoretical scattering models, have been identified by Stanton et al. (1994): gas-bearing (e.g. siphonophores), fluid-like (e.g. euphausiids) and hard elastic-shelled (e.g. pteropods). If there are consistent differences in the characteristic acoustic signatures of each of these classes of zooplankton, it should be possible to solve the inverse problem by using acoustic backscatter data to infer mathematically the class of scatterer. In this investigation of the feasibility of inverting acoustic data for scatterer-type, two different inversion techniques are applied to hundreds of pings of data collected from broadband ensonifications (∼350 kHz-750 kHz) of individual, live zooplankton tethered and suspended in a large tank filled with filtered sea water. In the Model Parameterization Classifier (MPC), the theoretical models for each scatterer-type are represented as either straight lines with slope and intercept parameters or rectified sinusoids with frequency and phase parameters. Individual pings are classified by comparison with these model parameterizations. The Empirical Orthogonal Function-based Classifier (EOFC) exploits the basic structure of the frequency response (e.g. presence of a resonance structure) through decomposition of the response into empirical orthogonal functions. Small groups of pings are classified by comparing their dominant modes with the dominant modes representative of the three scatterer-types. Preliminary results indicate that the acoustic classification of zooplankton ensonifications into categories representing distinct scatterer-types is feasible. Ultimately, it may be possible to develop in situ acoustic systems that are capable of inverting for the types of organisms sampled, thereby bridging the gap between acoustic backscatter measurements and estimates of zooplankton biomass.

[1]  Peter H. Wiebe,et al.  High-frequency acoustic volume backscattering in the Georges Bank coastal region and its interpretation using scattering models , 1997 .

[2]  R. Hewitt,et al.  Lateral target strength of Antarctic krill , 1996 .

[3]  J. Simmonds,et al.  Species identification using wideband backscatter with neural network and discriminant analysis , 1996 .

[4]  Alain Hillion,et al.  Narrowband acoustic identification of monospecific fish shoals , 1996 .

[5]  P. Wiebe,et al.  Acoustic scattering characteristics of several zooplankton groups , 1996 .

[6]  D. Demer,et al.  Zooplankton target strength: Volumetric or areal dependence? , 1995 .

[7]  Xiaoou Tang,et al.  Texture classification using principle-component analysis techniques , 1994, Remote Sensing.

[8]  Peter H. Wiebe,et al.  Acoustic characterization and discrimination of marine zooplankton and turbulence , 1994 .

[9]  P. Wiebe,et al.  On acoustic estimates of zooplankton biomass , 1994 .

[10]  C. Clay,et al.  Ray representation of sound scattering by weakly scattering deformed fluid cylinders: Simple physics and application to zooplankton , 1993 .

[11]  C. Clay,et al.  Average echoes from randomly oriented random‐length finite cylinders: Zooplankton models , 1993 .

[12]  K. Foote,et al.  Further analysis of target strength measurements of Antarctic krill at 38 and 120 kHz: Comparison with deformed cylinder model and inference of orientation distribution , 1993 .

[13]  M. Huntley Temperature-Dependent Production of Marine Copepods: A Global Synthesis , 1992, The American Naturalist.

[14]  L. Goodman,et al.  Ocean acoustics turbulence study: Acoustic scattering from a buoyant axisymmetric plume , 1992 .

[15]  Peter H. Wiebe,et al.  Frequency dependence of sound backscattering from live individual zooplankton , 1992 .

[16]  K. Foote Summary of methods for determining fish target strength at ultrasonic frequencies , 1991 .

[17]  James F. Lynch,et al.  A COMPARISON OF BROADBAND AND NARROW-BAND MODAL INVERSIONS FOR BOTTOM GEOACOUSTIC PROPERTIES AT A SITE NEAR CORPUS CHRISTI, TEXAS , 1991 .

[18]  Peter H. Wiebe,et al.  Sound scattering by live zooplankton and micronekton: Empirical studies with a dual-beam acoustical system , 1990 .

[19]  K. Foote,et al.  Implications of a new acoustic target strength for abundance estimates of Antarctic krill , 1990, Nature.

[20]  K. Foote Speed of sound in Euphausia superba , 1990 .

[21]  C. Flagg,et al.  Zooplankton Abundance Measurements From Acoustic Doppler Current Profilers , 1989, Proceedings OCEANS.

[22]  Philip L. Marston,et al.  Observations and modeling of the backscattering of short tone bursts from a spherical shell: Lamb wave echoes, glory, and axial reverberations , 1989 .

[23]  Sharon L. Smith,et al.  On the use of the acoustic Doppler current profiler to measure zooplankton abundance , 1989 .

[24]  T. Stanton Simple approximate formulas for backscattering of sound by spherical and elongated objects , 1988 .

[25]  M. Youngbluth,et al.  A new species of Halistemma (Siphonophora: Physonectae: Agalmidae) collected by submersible , 1988, Journal of the Marine Biological Association of the United Kingdom.

[26]  James F. Lynch,et al.  Perturbative inversion methods for obtaining bottom geoacoustic parameters in shallow water , 1987 .

[27]  J. Lynch,et al.  Tomographic resolution of mesoscale eddies in the marginal ice zone: A preliminary study , 1987 .

[28]  R. Nash,et al.  A field examination of acoustical scattering from marine organisms at 70 kHz , 1987 .

[29]  P. Pugh,et al.  New Observations on a Rare Physonect Siphonophore, Lychnagalma Utricularia (Claus, 1879) , 1986, Journal of the Marine Biological Association of the United Kingdom.

[30]  J. Dalen,et al.  Acoustic estimation of size distribution and abundance of zooplankton , 1986 .

[31]  R. W. Gilmer,et al.  Morphology and field behavior of pteropod molluscs: feeding methods in the families Cavoliniidae, Limacinidae and Peraclididae (Gastropoda: Thecosomata) , 1986 .

[32]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[33]  A. Bradley,et al.  New development in the MOCNESS, an apparatus for sampling zooplankton and micronekton , 1985 .

[34]  Michael G. Brown Linearized travel time, intensity, and waveform inversions in the ocean sound channel—A comparison , 1984 .

[35]  R. W. Gilmer,et al.  Behavior of Antarctic Krill, Euphausia superba: Chemoreception, Feeding, Schooling, and Molting , 1983, Science.

[36]  Manell Zakharia,et al.  Sonar target classification using a coherent echo processing , 1982, ICASSP.

[37]  D. Sameoto Quantitative Measurements of Euphausiids Using a 120-kHz Sounder and Their in situ Orientation , 1980 .

[38]  J. Mauchline,et al.  The Biology of Mysids and Euphausiids , 1980 .

[39]  Charles F. Greenlaw,et al.  Acoustical estimation of zooplankton populations1 , 1979 .

[40]  John D. Penrose,et al.  Acoustic target strengths of marine organisms , 1979 .

[41]  Carl Wunsch,et al.  Ocean acoustic tomography: a scheme for large scale monitoring , 1979 .

[42]  R. H. Love Target strength of an individual fish at any aspect , 1977 .

[43]  C. Clay,et al.  Acoustical Oceanography : Principles and Applications , 1977 .

[44]  C. Greenlaw Backscattering spectra of preserved zooplankton , 1977 .

[45]  Richard K. Johnson Sound scattering from a fluid sphere revisited , 1976 .

[46]  D. Middleton,et al.  On the classification of underwater acoustic signals. II. Experimental applications involving fish , 1975 .

[47]  M. Shinozuka,et al.  Digital simulation of random processes and its applications , 1972 .

[48]  G. Backus,et al.  Numerical Applications of a Formalism for Geophysical Inverse Problems , 1967 .

[49]  R. Lasker Feeding, growth, respiration, and carbon utilization of a euphausiid crustacean. , 1966 .

[50]  J. Morton The biology of Limacina retroversa , 1954, Journal of the Marine Biological Association of the United Kingdom.

[51]  Victor C. Anderson,et al.  Sound Scattering from a Fluid Sphere , 1950 .

[52]  E. Russell,et al.  The Orientation of Animals , 1941, Nature.

[53]  R. Macdonald Food and Habits of Meganyctiphanes norvegica , 1927, Journal of the Marine Biological Association of the United Kingdom.

[54]  Peter H. Wiebe,et al.  Acoustical study of the spatial distribution of plankton on Georges Bank and the relationship between volume backscattering strength and the taxonomic composition of the plankton , 1996 .

[55]  W. Mare,et al.  Ecosystem Management and the Antarctic Krill , 1993 .

[56]  P. Wiebe,et al.  Acoustic estimates of Antarctic krill , 1991, Nature.

[57]  R. Hewitt,et al.  Krill abundance , 1991, Nature.

[58]  D. Holliday,et al.  Quantitative zooplankton distributions from multifrequency acoustics , 1990 .

[59]  Anne Lebourges Utilisation de la spectroscopie ultrasonore en vue d'identifier les especes de poisson , 1990 .

[60]  K. Foote,et al.  Target strengths of Antarctic krill (Euphausia superba) at 38 and 120 kHz , 1990 .

[61]  G. S. Kleppel,et al.  Determination of zooplankton size and distribution with multifrequency acoustic technology , 1989 .

[62]  Timothy K. Stanton,et al.  Sound scattering by cylinders of finite length. II. Elastic cylinders , 1988 .

[63]  M. Okiyama,et al.  Squid as Predators on Krill (Euphausia superba) and Prey for Sperm Whales in the Southern Ocean , 1988 .

[64]  P. A. Prince,et al.  Reproductive Performance of Seabirds and Seals at South Georgia and Signy Island, South Orkney Islands, 1976–1987: Implications for Southern Ocean Monitoring Studies , 1988 .

[65]  Philip L. Marston,et al.  GTD for backscattering from elastic spheres and cylinders in water and the coupling of surface elastic waves with the acoustic field , 1988 .

[66]  C. Mills,et al.  THE CORRELATION BETWEEN NEMATOCYST TYPES AND DIETS IN PELAGIC HYDROZOA , 1988 .

[67]  J. T. Turner The feeding ecology of some zooplankters that are important prey items of larval fish , 1984 .

[68]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[69]  I. Everson Diurnal variations in mean volume backscattering strength of an Antarctic krill (Euphausia superba) patch , 1982 .

[70]  D. Biggs Field studies of fishing, feeding, and digestion in siphonophores† , 1977 .

[71]  Peter Grant,et al.  DIGITAL COMMUNICATIONS , 2022 .