Mechanisms of biliary excretion of lithocholate-3-sulfate in Eisai hyperbilirubinemic rats (EHBR)

[1]  P. Meier,et al.  Hepatocellular transport of bile acids. Evidence for distinct subcellular localizations of electrogenic and ATP-dependent taurocholate transport in rat hepatocytes. , 1994, The Journal of biological chemistry.

[2]  H. Takikawa,et al.  Lithocholate-3-O-glucuronide-induced cholestasis , 1993, Digestive Diseases and Sciences.

[3]  D. Keppler,et al.  ATP-Dependent Transport across the Hepatocyte Canalicular Membrane , 1993 .

[4]  Y. Sugiyama,et al.  Kinetic analysis of hepatobiliary transport of organic anions in Eisai hyperbilirubinemic mutant rats. , 1993, The Journal of pharmacology and experimental therapeutics.

[5]  H. Takikawa,et al.  Effects of ursodeoxycholate, its glucuronide and disulfate and beta-muricholate on biliary bicarbonate concentration and biliary lipid excretion. , 1992, Journal of hepatology.

[6]  T. Mikami,et al.  A new rat mutant with chronic conjugated hyperbilirubinemia and renal glomerular lesions. , 1992, Laboratory animal science.

[7]  N. Kaplowitz,et al.  Canalicular transport of reduced glutathione in normal and mutant Eisai hyperbilirubinemic rats. , 1992, The Journal of biological chemistry.

[8]  Toshio Yamamoto,et al.  Bilirubin diglucuronide transport by rat liver canalicular membrane vesicles: Stimulation by bicarbonate ion , 1991, Hepatology.

[9]  H. Kobayashi,et al.  ATP‐dependent taurocholate transport by rat liver canalicular membrane vesicles , 1991, Hepatology.

[10]  T. Mikami,et al.  Biliary excretion of bile acid conjugates in a hyperbilirubinemic mutant sprague‐dawley rat , 1991, Hepatology.

[11]  Z. Gatmaitan,et al.  Rat liver canalicular membrane vesicles contain an ATP-dependent bile acid transport system. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[12]  G. Feldmann,et al.  Inhibition by colchicine of biliary secretion of diethylmaleate in the rat: Evidence for microtubule‐dependent vesicular transport , 1991, Hepatology.

[13]  K. Hayashi,et al.  ATP-dependent transport for glucuronides in canalicular plasma membrane vesicles. , 1991, Biochemical and biophysical research communications.

[14]  T. Ishikawa,et al.  ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular membrane. Role of the ATP-dependent transport system for glutathione S-conjugates. , 1990, The Journal of biological chemistry.

[15]  A. Hofmann,et al.  Concentrative biliary secretion of ceftriaxone , 1990 .

[16]  K. Hayashi,et al.  Mechanism of glutathione S-conjugate transport in canalicular and basolateral rat liver plasma membranes. , 1990, The Journal of biological chemistry.

[17]  H. Takikawa,et al.  Comparison of biliary excretion and metabolism of lithocholic acid and its sulfate and glucuronide conjugates in rats. , 1989, Biochimica et biophysica acta.

[18]  G. Feldmann,et al.  Immunoperoxidase localization of bile salts in rat liver cells. Evidence for a role of the Golgi apparatus in bile salt transport. , 1988, The Journal of clinical investigation.

[19]  M. Enserink,et al.  Separate transport systems for biliary secretion of sulfated and unsulfated bile acids in the rat. , 1988, The Journal of clinical investigation.

[20]  W. Lamers,et al.  Hereditary chronic conjugated hyperbilirubinemia in mutant rats caused by defective hepatic anion transport , 1985, Hepatology.

[21]  F. Suchy,et al.  Intracellular bile acid transport in rat liver as visualized by electron microscope autoradiography using a bile acid analogue. , 1983, The American journal of physiology.

[22]  D. Dhumeaux,et al.  Biliary transport of cholephilic dyes: evidence for two different pathways. , 1977, The American journal of physiology.

[23]  C. Kao,et al.  Shared and separate pathways for biliary excretion of bilirubin and BSP in rats. , 1973, The American journal of physiology.

[24]  Y. Sugiyama,et al.  Multiple transport systems for organic anions across the bile canalicular membrane. , 1994, The Journal of pharmacology and experimental therapeutics.

[25]  H. Takikawa,et al.  Effects of organic anions and bile acids on biliary lipid excretion in hyperbilirubinemic mutant Sprague-Dawley rats. , 1993, Journal of hepatology.

[26]  H. Takikawa,et al.  Estradiol-17β-glucuronide-induced cholestasis , 1993 .

[27]  H. Takikawa,et al.  Estradiol-17 beta-glucuronide-induced cholestasis. Effects of ursodeoxycholate-3-O-glucuronide and 3,7-disulfate. , 1993, Journal of hepatology.

[28]  T. Uesugi,et al.  Organic anion transport study in mutant rats with autosomal recessive conjugated hyperbilirubinemia. , 1991, Life sciences.

[29]  A. Hofmann,et al.  Concentrative biliary secretion of ceftriaxone. Inhibition of lipid secretion and precipitation of calcium ceftriaxone in bile. , 1990, Gastroenterology.

[30]  北村 庸雄 Defective ATP-dependent bile canalicular transport of organic anions in mutant (TR[-]) rats with conjugated hyperbilirubinemia , 1990 .

[31]  J. Fujimoto,et al.  Effect of colchicine and S,S,S-tributyl phosphorotrithioate (DEF) on the biliary excretion of sucrose, mannitol and horseradish peroxidase in the rat. , 1983, Biochemical pharmacology.