The finite cell method for polygonal meshes: poly-FCM

In the current article, we extend the two-dimensional version of the finite cell method (FCM), which has so far only been used for structured quadrilateral meshes, to unstructured polygonal discretizations. Therefore, the adaptive quadtree-based numerical integration technique is reformulated and the notion of generalized barycentric coordinates is introduced. We show that the resulting polygonal (poly-)FCM approach retains the optimal rates of convergence if and only if the geometry of the structure is adequately resolved. The main advantage of the proposed method is that it inherits the ability of polygonal finite elements for local mesh refinement and for the construction of transition elements (e.g. conforming quadtree meshes without hanging nodes). These properties along with the performance of the poly-FCM are illustrated by means of several benchmark problems for both static and dynamic cases.

[1]  Ernst Rank,et al.  Using the finite cell method to predict crack initiation in ductile materials , 2014 .

[2]  P. Milbradt,et al.  QUADRATURE POINTS ON POLYHEDRAL ELEMENTS , 2006 .

[3]  Ulrich Gabbert,et al.  The finite cell method for tetrahedral meshes , 2016 .

[4]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[5]  U. Gabbert,et al.  Comparison of different higher order finite element schemes for the simulation of Lamb waves , 2012 .

[6]  D Komatitsch,et al.  CASTILLO-COVARRUBIAS JM, SANCHEZ-SESMA FJ. THE SPECTRAL ELEMENT METHOD FOR ELASTIC WAVE EQUATIONS-APPLICATION TO 2-D AND 3-D SEISMIC PROBLEMS , 1999 .

[7]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[8]  Michael S. Floater,et al.  Gradient Bounds for Wachspress Coordinates on Polytopes , 2013, SIAM J. Numer. Anal..

[9]  R. Sibson A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  P. Milbradt,et al.  Polytope finite elements , 2008 .

[11]  Glaucio H. Paulino,et al.  On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .

[12]  I. A. Viktorov Rayleigh and Lamb Waves , 1967 .

[13]  Ming-Chen Hsu,et al.  The tetrahedral finite cell method: Higher‐order immersogeometric analysis on adaptive non‐boundary‐fitted meshes , 2016 .

[14]  Ernst Rank,et al.  Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method , 2012, Computational Mechanics.

[15]  Kai Hormann,et al.  Maximum Entropy Coordinates for Arbitrary Polytopes , 2008, Comput. Graph. Forum.

[16]  Mathieu Desbrun,et al.  Barycentric coordinates for convex sets , 2007, Adv. Comput. Math..

[17]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[18]  Ernst Rank,et al.  The Finite Cell Method for linear thermoelasticity , 2012, Comput. Math. Appl..

[19]  Glaucio H. Paulino,et al.  PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes , 2012 .

[20]  Ernst Rank,et al.  The hp‐d‐adaptive finite cell method for geometrically nonlinear problems of solid mechanics , 2012 .

[21]  Mohamed S. Ebeida,et al.  A Simple Algorithm for Maximal Poisson‐Disk Sampling in High Dimensions , 2012, Comput. Graph. Forum.

[22]  Kai Hormann,et al.  Mean value coordinates for arbitrary planar polygons , 2006, TOGS.

[23]  Ming-Chen Hsu,et al.  The tetrahedral finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex geometries , 2016 .

[24]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .

[25]  Ernst Rank,et al.  The finite cell method for three-dimensional problems of solid mechanics , 2008 .

[26]  N. Sukumar,et al.  Generalized Gaussian quadrature rules on arbitrary polygons , 2010 .

[27]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[28]  R. Yasbolaghi,et al.  A polygonal-FEM technique in modeling large sliding contact on non-conformal meshes , 2015 .

[29]  Tao Ju,et al.  A general geometric construction of coordinates in a convex simplicial polytope , 2007, Comput. Aided Geom. Des..

[30]  N. Sukumar,et al.  Quadratic maximum-entropy serendipity shape functions for arbitrary planar polygons , 2013 .

[31]  Alexander Düster,et al.  Numerical homogenization of hybrid metal foams using the finite cell method , 2015, Comput. Math. Appl..

[32]  E. Rank,et al.  Topology optimization using the finite cell method , 2012 .

[33]  U Gabbert,et al.  Simulation of Lamb wave reflections at plate edges using the semi-analytical finite element method. , 2012, Ultrasonics.

[34]  Ernst Rank,et al.  The Finite Cell Method: High order simulation of complex structures without meshing , 2009 .

[35]  Mohamed S. Ebeida,et al.  Uniform Random Voronoi Meshes , 2011, IMR.

[36]  N. Sukumar,et al.  Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .

[37]  Glaucio H. Paulino,et al.  Polygonal finite elements for incompressible fluid flow , 2014 .

[38]  Dominik Schillinger,et al.  The p- and B-spline versions of the geometrically nonlinear finite cell method and hierarchical refinement strategies for adaptive isogeometric and embedded domain analysis , 2012 .

[39]  W. Ostachowicz,et al.  Guided Waves in Structures for SHM: The Time - domain Spectral Element Method , 2012 .

[40]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[41]  T. Belytschko,et al.  A first course in finite elements , 2007 .

[42]  R. Glowinski,et al.  Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems , 2007 .

[43]  J. P. Webb,et al.  Hierarchical Bases for Polygonal Finite Elements , 2015, IEEE Transactions on Magnetics.

[44]  Glaucio H. Paulino,et al.  Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .

[45]  E. Rank,et al.  Numerical investigations of foam-like materials by nested high-order finite element methods , 2009 .

[46]  Glaucio H. Paulino,et al.  Polygonal multiresolution topology optimization (PolyMTOP) for structural dynamics , 2016 .

[47]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[48]  Peter Wriggers,et al.  Polygonal finite element methods for contact-impact problems on non-conformal meshes , 2014 .

[49]  Ralf-Peter Mundani,et al.  The finite cell method for geometrically nonlinear problems of solid mechanics , 2010 .

[50]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[51]  N. Sukumar,et al.  Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons , 2011 .

[52]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[53]  Markus H. Gross,et al.  A Finite Element Method on Convex Polyhedra , 2007, Comput. Graph. Forum.

[54]  Glaucio H. Paulino,et al.  PolyTop++: an efficient alternative for serial and parallel topology optimization on CPUs & GPUs , 2015, Structural and Multidisciplinary Optimization.

[55]  P. Angot,et al.  A Fictitious domain approach with spread interface for elliptic problems with general boundary conditions , 2007 .

[56]  Ulrich Gabbert,et al.  Efficient integration method for fictitious domain approaches , 2015 .

[57]  Glaucio H. Paulino,et al.  Honeycomb Wachspress finite elements for structural topology optimization , 2009 .

[58]  Philippe Angot,et al.  A general fictitious domain method with immersed jumps and multilevel nested structured meshes , 2007, J. Comput. Phys..

[59]  I. Babuska,et al.  Introduction to Finite Element Analysis: Formulation, Verification and Validation , 2011 .

[60]  Paul Steinmann,et al.  Investigations on the polygonal finite element method: Constrained adaptive Delaunay tessellation and conformal interpolants , 2013 .

[61]  Hans-Georg Sehlhorst Numerical homogenization strategies for cellular materials with applications in structural mechanics , 2011 .

[62]  T. Belytschko,et al.  A First Course in Finite Elements: Belytschko/A First Course in Finite Elements , 2007 .

[63]  Ernst Rank,et al.  Smart octrees: Accurately integrating discontinuous functions in 3D , 2016 .

[64]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[65]  Francis Tin-Loi,et al.  Scaled boundary polygons with application to fracture analysis of functionally graded materials , 2014 .

[66]  Stefano Berrone,et al.  The virtual element method for discrete fracture network simulations , 2014 .

[67]  Ernst Rank,et al.  An efficient integration technique for the voxel‐based finite cell method , 2012 .

[68]  Mark Meyer,et al.  Generalized Barycentric Coordinates on Irregular Polygons , 2002, J. Graphics, GPU, & Game Tools.

[69]  Alexander Düster,et al.  Finite and spectral cell method for wave propagation in heterogeneous materials , 2014, Computational Mechanics.

[70]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[71]  S. Duczek,et al.  Simulation of Lamb waves using the spectral cell method , 2013, Smart Structures.

[72]  L. Kudela,et al.  Highly Accurate Subcell Integration in the Context of The Finite Cell Method , 2013 .

[73]  N. Sukumar Construction of polygonal interpolants: a maximum entropy approach , 2004 .

[74]  Alexander Düster,et al.  Numerical analysis of Lamb waves using the finite and spectral cell methods , 2014 .

[75]  Dominik Schillinger,et al.  The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models , 2015 .

[76]  Y. Bazilevs,et al.  Weakly enforced essential boundary conditions for NURBS‐embedded and trimmed NURBS geometries on the basis of the finite cell method , 2013 .

[77]  Glaucio H. Paulino,et al.  Addressing Integration Error for Polygonal Finite Elements Through Polynomial Projections: A Patch Test Connection , 2013, 1307.4423.

[78]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[79]  Glaucio H. Paulino,et al.  Gradient correction for polygonal and polyhedral finite elements , 2015 .

[80]  The FCM compared to the h-version FEM for elasto-plastic problems , 2014 .

[81]  Sascha Duczek,et al.  Higher order finite elements and the fictitious domain concept for wave propagation analysis , 2014 .

[82]  Ernst Rank,et al.  PERFORMANCE OF DIFFERENT INTEGRATION SCHEMES IN FACING DISCONTINUITIES IN THE FINITE CELL METHOD , 2013 .

[83]  Joe D. Warren,et al.  Barycentric coordinates for convex polytopes , 1996, Adv. Comput. Math..

[84]  Franco Brezzi,et al.  Virtual Element Methods for plate bending problems , 2013 .

[85]  Ernst Rank,et al.  The finite cell method for the J2 flow theory of plasticity , 2013 .

[86]  Barna A. Szabó,et al.  Quasi-regional mapping for the p-version of the finite element method , 1997 .

[87]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[88]  Ulrich Gabbert,et al.  The finite and spectral cell methods for smart structure applications: transient analysis , 2015 .

[89]  Kai Hormann,et al.  A general construction of barycentric coordinates over convex polygons , 2006, Adv. Comput. Math..

[90]  N. Sukumar,et al.  Extended finite element method on polygonal and quadtree meshes , 2008 .

[91]  B. Moran,et al.  Natural neighbour Galerkin methods , 2001 .

[92]  Joseph E. Bishop,et al.  A displacement‐based finite element formulation for general polyhedra using harmonic shape functions , 2014 .

[93]  Magdalena Ortiz,et al.  Local maximum‐entropy approximation schemes: a seamless bridge between finite elements and meshfree methods , 2006 .

[94]  Jean Braun,et al.  A numerical method for solving partial differential equations on highly irregular evolving grids , 1995, Nature.

[95]  Alireza Tabarraei,et al.  Adaptive computations on conforming quadtree meshes , 2005 .

[96]  A. Russo,et al.  New perspectives on polygonal and polyhedral finite element methods , 2014 .

[97]  Alexander Düster,et al.  Non-standard bone simulation: interactive numerical analysis by computational steering , 2011, Comput. Vis. Sci..

[98]  Ernst Rank,et al.  Efficient and accurate numerical quadrature for immersed boundary methods , 2015, Advanced Modeling and Simulation in Engineering Sciences.

[99]  Cv Clemens Verhoosel,et al.  Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone , 2015 .

[100]  Long Chen,et al.  Fast Methods for Computing Centroidal Voronoi Tessellations , 2014, Journal of Scientific Computing.

[101]  Alireza Tabarraei,et al.  APPLICATION OF POLYGONAL FINITE ELEMENTS IN LINEAR ELASTICITY , 2006 .

[102]  Glaucio H. Paulino,et al.  Topology optimization using polytopes , 2013, 1312.7016.

[103]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[104]  M. Floater Wachspress and Mean Value Coordinates , 2014 .

[105]  Glaucio H. Paulino,et al.  Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture , 2014, International Journal of Fracture.

[106]  Ernst Rank,et al.  Finite cell method compared to h-version finite element method for elasto-plastic problems , 2014 .

[107]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[108]  Amir R. Khoei,et al.  A polygonal finite element method for modeling arbitrary interfaces in large deformation problems , 2012 .

[109]  Alexander Düster,et al.  Numerical integration of discontinuities on arbitrary domains based on moment fitting , 2016 .

[110]  Ernst Rank,et al.  Finite cell method , 2007 .

[111]  J. Warren,et al.  Mean value coordinates for closed triangular meshes , 2005, SIGGRAPH 2005.

[112]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[113]  S. Natarajan,et al.  Convergence and accuracy of displacement based finite element formulations over arbitrary polygons: Laplace interpolants, strain smoothing and scaled boundary polygon formulation , 2014 .

[114]  Z. Su,et al.  Identification of Damage Using Lamb Waves , 2009 .

[115]  Wolfgang A. Wall,et al.  An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: Application to embedded interface methods , 2014, J. Comput. Phys..

[116]  Pierre Alliez,et al.  Optimizing Voronoi Diagrams for Polygonal Finite Element Computations , 2010, IMR.

[117]  Ernst Rank,et al.  Theoretical and Numerical Investigation of the Finite Cell Method , 2015, Journal of Scientific Computing.

[118]  Hugo Ledoux,et al.  An Efficient Natural Neighbour Interpolation Algorithm for Geoscientific Modelling , 2004, SDH.

[119]  M. Sambridge,et al.  Geophysical parametrization and interpolation of irregular data using natural neighbours , 1995 .

[120]  Glaucio H. Paulino,et al.  Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements , 2014 .

[121]  Alexander Düster,et al.  Local enrichment of the finite cell method for problems with material interfaces , 2013 .

[122]  Ralf-Peter Mundani,et al.  A Review of the Finite Cell Method for Nonlinear Structural Analysis of Complex CAD and Image-Based Geometric Models , 2018, 1807.01285.

[123]  Chandrajit L. Bajaj,et al.  Quadratic serendipity finite elements on polygons using generalized barycentric coordinates , 2011, Math. Comput..

[124]  Zhengxiong Yang,et al.  The Finite Cell Method for Geometry-Based Structural Simulation , 2011 .

[125]  Martin Reimers,et al.  Mean value coordinates in 3D , 2005, Comput. Aided Geom. Des..

[126]  Gautam Dasgupta,et al.  Integration within Polygonal Finite Elements , 2003 .

[127]  Glaucio H. Paulino,et al.  Polygonal finite elements for finite elasticity , 2015 .