Minimum sum multicoloring on the edges of trees
暂无分享,去创建一个
[1] Klaus Jansen,et al. Approximation Results for the Optimum Cost Chromatic Partition Problem , 1997, J. Algorithms.
[2] Klaus Jansen,et al. The Optimum Cost Chromatic Partition Problem , 1997, CIAC.
[3] Han Hoogeveen,et al. Complexity of Scheduling Multiprocessor Tasks with Prespecified Processor Allocations , 1994, Discret. Appl. Math..
[4] Alexander Schrijver,et al. Combinatorial optimization. Polyhedra and efficiency. , 2003 .
[6] Guy Kortsarz,et al. Tools for Multicoloring with Applications to Planar Graphs and Partial k-Trees , 2002, J. Algorithms.
[7] William J. Cook,et al. Combinatorial optimization , 1997 .
[8] Guy Kortsarz,et al. Sum Multicoloring of Graphs , 2000, J. Algorithms.
[9] Guy Kortsarz,et al. Multicoloring trees , 2003, Inf. Comput..
[10] M. R. Rao,et al. Combinatorial Optimization , 1992, NATO ASI Series.
[11] Dániel Marx. The Complexity of Tree Multicolorings , 2002, MFCS.
[12] Marek Kubale,et al. Edge-chromatic sum of trees and bounded cyclicity graphs , 2000, Inf. Process. Lett..
[13] Guy Kortsarz,et al. Sum Coloring Interval and k-Claw Free Graphs with Application to Scheduling Dependent Jobs , 2003, Algorithmica.
[14] Marek Kubale,et al. Preemptive versus nonpreemptive scheduling of biprocessor tasks on dedicated processors , 1996 .
[15] Edward G. Coffman,et al. Scheduling File Transfers , 1985, SIAM J. Comput..
[16] Mohammad R. Salavatipour,et al. On Sum Coloring of Graphs , 2003, Discret. Appl. Math..