Minimum sum multicoloring on the edges of trees

The edge multicoloring problem is that given a graph G and integer demands x (e) for every edge e, assign a set of x(e) colors to edge e, such that adjacent edges have disjoint sets of colors. In the minimum sum edge multicoloring problem the finish time of an edge is defined to be the highest color assigned to it. The goal is to minimize the sum of the finish times. The main result of the paper is a polynomial-time approximation scheme for minimum sum multicoloring the edges of trees. We also show that the problem is strongly NP-hard for trees, even if every demand is at most 2.

[1]  Klaus Jansen,et al.  Approximation Results for the Optimum Cost Chromatic Partition Problem , 1997, J. Algorithms.

[2]  Klaus Jansen,et al.  The Optimum Cost Chromatic Partition Problem , 1997, CIAC.

[3]  Han Hoogeveen,et al.  Complexity of Scheduling Multiprocessor Tasks with Prespecified Processor Allocations , 1994, Discret. Appl. Math..

[4]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[6]  Guy Kortsarz,et al.  Tools for Multicoloring with Applications to Planar Graphs and Partial k-Trees , 2002, J. Algorithms.

[7]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[8]  Guy Kortsarz,et al.  Sum Multicoloring of Graphs , 2000, J. Algorithms.

[9]  Guy Kortsarz,et al.  Multicoloring trees , 2003, Inf. Comput..

[10]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[11]  Dániel Marx The Complexity of Tree Multicolorings , 2002, MFCS.

[12]  Marek Kubale,et al.  Edge-chromatic sum of trees and bounded cyclicity graphs , 2000, Inf. Process. Lett..

[13]  Guy Kortsarz,et al.  Sum Coloring Interval and k-Claw Free Graphs with Application to Scheduling Dependent Jobs , 2003, Algorithmica.

[14]  Marek Kubale,et al.  Preemptive versus nonpreemptive scheduling of biprocessor tasks on dedicated processors , 1996 .

[15]  Edward G. Coffman,et al.  Scheduling File Transfers , 1985, SIAM J. Comput..

[16]  Mohammad R. Salavatipour,et al.  On Sum Coloring of Graphs , 2003, Discret. Appl. Math..