Intersection bounds: estimation and inference

We develop a practical and novel method for inference on intersection bounds, namely bounds defined by either the infimum or supremum of a parametric or nonparametric function, or equivalently, the value of a linear programming problem with a potentially infinite constraint set. Our approach is especially convenient in models comprised of a continuum of inequalities that are separable in parameters, and also applies to models with inequalities that are non-separable in parameters. Since analog estimators for intersection bounds can be severely biased in finite samples, routinely underestimating the length of the identified set, we also offer a (downward/upward) median unbiased estimator of these (upper/lower) bounds as a natural by-product of our inferential procedure. Furthermore, our method appears to be the first and currently only method for inference in nonparametric models with a continuum of inequalities. We develop asymptotic theory for our method based on the strong approximation of a sequence of studentized empirical processes by a sequence of Gaussian or other pivotal processes. We provide conditions for the use of nonparametric kernel and series estimators, including a novel result that establishes strong approximation for general series estimators, which may be of independent interest. We illustrate the usefulness of our method with Monte Carlo experiments and an empirical example.

[1]  Victor Chernozhukov,et al.  Set identification with Tobin regressors , 2009 .

[2]  Charles F. Manski,et al.  Confidence Intervals for Partially Identified Parameters , 2003 .

[3]  Azeem M. Shaikh,et al.  Inference for identifiable parameters in partially identified econometric models , 2006 .

[4]  A. Galichon,et al.  A Test of Non-Identifying Restrictions and Confidence Regions for Partially Identified Parameters , 2009, 2102.04151.

[5]  Philip A. Haile,et al.  Inference with an Incomplete Model of English Auctions , 2000, Journal of Political Economy.

[6]  J J Heckman,et al.  Local instrumental variables and latent variable models for identifying and bounding treatment effects. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D. Andrews,et al.  Inference for Parameters Defined by Moment Inequalities: A Recommended Moment Selection Procedure , 2008 .

[8]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[9]  C. Manski,et al.  Monotone Instrumental Variables with an Application to the Returns to Schooling , 1998 .

[10]  E. Vytlacil,et al.  Partial Identification in Triangular Systems of Equations With Binary Dependent Variables , 2011 .

[11]  V. Chernozhukov,et al.  Estimation and Confidence Regions for Parameter Sets in Econometric Models , 2007 .

[12]  Vladimir I. Piterbarg,et al.  Asymptotic Methods in the Theory of Gaussian Processes and Fields , 1995 .

[13]  W. Newey,et al.  Convergence rates and asymptotic normality for series estimators , 1997 .

[14]  Jörg Stoye,et al.  More on Confidence Intervals for Partially Identified Parameters , 2008 .

[15]  O. Linton,et al.  Testing for Stochastic Monotonicity , 2006 .

[16]  V. V. Yurinskii On the Error of the Gaussian Approximation for Convolutions , 1978 .

[17]  C. Manski Anatomy of the Selection Problem , 1989 .

[18]  H. Bierens Consistent model specification tests , 1982 .

[19]  Emmanuel Rio,et al.  Local invariance principles and their application to density estimation , 1994 .

[20]  Yingcun Xia,et al.  UNIFORM BAHADUR REPRESENTATION FOR LOCAL POLYNOMIAL ESTIMATES OF M-REGRESSION AND ITS APPLICATION TO THE ADDITIVE MODEL , 2007, Econometric Theory.

[21]  Andrew Chesher,et al.  Instrumental Variable Models for Discrete Outcomes , 2008 .

[22]  Estimating Income Poverty in the Presence of Missing Data and Measurement Error , 2009 .

[23]  D. Andrews Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models , 1991 .

[24]  Brent Kreider,et al.  Disability and Employment , 2002 .

[25]  Elie Tamer,et al.  Advances in Economics and Econometrics: Identification in Models of Oligopoly Entry , 2006 .

[26]  M. Rudelson,et al.  The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.

[27]  A. Skorokhod Limit Theorems for Stochastic Processes , 1956 .

[28]  Francesca Molinari,et al.  Asymptotic Properties for a Class of Partially Identified Models , 2006 .

[29]  H. White Asymptotic theory for econometricians , 1985 .

[30]  J. Powell,et al.  Least absolute deviations estimation for the censored regression model , 1984 .

[31]  M. Rudelson Random Vectors in the Isotropic Position , 1996, math/9608208.

[32]  Adam M. Rosen,et al.  Confidence Sets for Partially Identified Parameters that Satisfy a Finite Number of Moment Inequalities , 2006 .

[33]  Joel L. Horowitz,et al.  An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model Against a Nonparametric Alternative , 2001 .

[34]  Whitney Newey Convergence Rates for Series Estimators , 1993 .

[35]  Pascal Massart,et al.  STRONG APPROXIMATION FOR MULTIVARIATE EMPIRICAL AND RELATED PROCESSES, VIA KMT CONSTRUCTIONS , 1989 .

[36]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[37]  Patrik Guggenberger,et al.  VALIDITY OF SUBSAMPLING AND “PLUG-IN ASYMPTOTIC” INFERENCE FOR PARAMETERS DEFINED BY MOMENT INEQUALITIES , 2007, Econometric Theory.

[38]  Libertad González Nonparametric Bounds on the Returns to Language Skills , 2004, SSRN Electronic Journal.

[39]  Ivan A. Canay EL inference for partially identified models: Large deviations optimality and bootstrap validity , 2010 .

[40]  Thomas M. Stoker,et al.  Set identification and sensitivity analysis with Tobin regressors , 2010 .

[41]  M. Ponomareva Inference in Models Dened by Conditional Moment Inequalities with Continuous Covariates , 2009 .

[42]  Reform of Unemployment Compensation in Germany: A Nonparametric Bounds Analysis Using Register Data , 2005 .

[43]  K. Hirano,et al.  Impossibility Results for Nondifferentiable Functionals , 2012 .

[44]  R. Blundell,et al.  Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds , 2004, SSRN Electronic Journal.

[45]  J. Heckman,et al.  Making the Most out of Programme Evaluations and Social Experiments: Accounting for Heterogeneity in Programme Impacts , 1997 .

[46]  M. C. Jones,et al.  Testing Monotonicity of Regression , 1998 .

[47]  D. Andrews,et al.  Invalidity of the Bootstrap and The M Out Of N Bootstrap for Confidence Interval Endpoints Defined by Moment Inequalities , 2009 .

[48]  D. Pollard A User's Guide to Measure Theoretic Probability by David Pollard , 2001 .

[49]  D. Pollard Convergence of stochastic processes , 1984 .

[50]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[51]  D. Andrews,et al.  Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection , 2007 .

[52]  Elias Masry,et al.  MULTIVARIATE LOCAL POLYNOMIAL REGRESSION FOR TIME SERIES:UNIFORM STRONG CONSISTENCY AND RATES , 1996 .

[53]  Joel L. Horowitz,et al.  Nonparametric estimation of an additive model with a link function , 2002, math/0508595.

[54]  Xiaohong Chen Chapter 76 Large Sample Sieve Estimation of Semi-Nonparametric Models , 2007 .

[55]  T. Tao,et al.  From the Littlewood-Offord problem to the Circular Law: universality of the spectral distribution of random matrices , 2008, 0810.2994.

[56]  Federico A. Bugni Bootstrap Inference in Partially Identified Models Defined by Moment Inequalities: Coverage of the Identified Set , 2010 .

[57]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[58]  Wolfgang Härdle,et al.  APPLIED NONPARAMETRIC METHODS , 1992 .

[59]  P. Bickel,et al.  On Some Global Measures of the Deviations of Density Function Estimates , 1973 .

[60]  S. Lee,et al.  Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality , 2009 .

[61]  E. Mammen,et al.  Comparing Nonparametric Versus Parametric Regression Fits , 1993 .

[62]  Richard M. Dudley,et al.  Invariance principles for sums of Banach space valued random elements and empirical processes , 1983 .