The M87 Jet - “Rosetta Stone” of AGN Jets

We investigate the structure and dynamics of the M87 jet based on multi-frequency VLBI observations and MHD jet theories. Millimeter VLBI cores are considered as innermost jet emissions. The jet structure up to ~ 105 r s is described as a parabolic streamline, indicating the lateral expansion under a confinement by the stratified ISM. Thus, the jet collimation maintains in five orders of magnitude in the distance starting from the vicinity of the supermassive black hole (SMBH), less than 10 r s . We here examine the jet parabolic structure in order to identify the property of a bulk acceleration; observed sub-to-superluminal motions indicate an MHD acceleration from non-relativistic to relativistic regimes. We propose that the M87 jet consists of Poynting-flux dominated flows, powered by nonlinear torsional Alfven waves. Future sub-mm VLBI observations play an important role in resolving the origin of the M87 jets.

[1]  Alan E. E. Rogers,et al.  Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87 , 2012, Science.

[2]  F. Mottez,et al.  Non-linear simple relativistic Alfvén waves in astrophysical plasmas , 2012 .

[3]  Masanori Nakamura,et al.  THE STRUCTURE OF THE M87 JET: A TRANSITION FROM PARABOLIC TO CONICAL STREAMLINES , 2011, 1110.1793.

[4]  Noriyuki Kawaguchi,et al.  An origin of the radio jet in M87 at the location of the central black hole , 2011, Nature.

[5]  K. Sokolovsky,et al.  A VLBA survey of the core shift effect in AGN jets - I. Evidence of dominating synchrotron opacity , 2011, 1103.6032.

[6]  Tod R. Lauer,et al.  THE BLACK HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS , 2011, 1101.1954.

[7]  Hongyan Zhou,et al.  Determination of the intrinsic velocity field in the M87 jet , 2009, 0904.1857.

[8]  Paul S. Smith,et al.  The inner jet of an active galactic nucleus as revealed by a radio-to-γ-ray outburst , 2008, Nature.

[9]  Stanford,et al.  Hot Self-Similar Relativistic Magnetohydrodynamic Flows , 2008, 0801.1120.

[10]  Paul S. Smith,et al.  Multiwaveband Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Correlated Polarization Behavior , 2007, 0705.4273.

[11]  D. E. Harris,et al.  Superluminal Radio Features in the M87 Jet and the Site of Flaring TeV Gamma-Ray Emission , 2007, 0705.2448.

[12]  R. Walker,et al.  High-Frequency VLBI Imaging of the Jet Base of M87 , 2007, astro-ph/0701511.

[13]  Sang-Sung Lee,et al.  A GLOBAL 86 GHZ VLBI SURVEY OF COMPACT RADIO SOURCES , 2007, 0803.4035.

[14]  J. McKinney General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems , 2006, astro-ph/0603045.

[15]  W. Sparks,et al.  The Outburst of HST-1 in the M87 Jet , 2005, astro-ph/0511755.

[16]  J. Tonry,et al.  The ACS Virgo Cluster Survey. X. Half-Light Radii of Globular Clusters in Early-Type Galaxies: Environmental Dependencies and a Standard Ruler for Distance Estimation , 2005, astro-ph/0508219.

[17]  M. Cohen,et al.  MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. XI. SPECTRAL DISTRIBUTIONS , 2014, 1404.0014.

[18]  Eric S. Perlman,et al.  The X-Ray Emissions from the M87 Jet: Diagnostics and Physical Interpretation , 2005, astro-ph/0503024.

[19]  A. Wilson,et al.  Submitted to the Astrophysical Journal Chandra X-ray Imaging and Spectroscopy of the M87 Jet and Nucleus , 2002 .

[20]  D. Harris,et al.  A High-Resolution X-Ray Image of the Jet in M87 , 2001, astro-ph/0109160.

[21]  David L. Meier,et al.  The Association of Jet Production with Geometrically Thick Accretion Flows and Black Hole Rotation , 2000, astro-ph/0010231.

[22]  K. Tsinganos,et al.  A disc-wind model with correct crossing of all magnetohydrodynamic critical surfaces , 2000, astro-ph/0005582.

[23]  John A. Biretta,et al.  Formation of the radio jet in M87 at 100 Schwarzschild radii from the central black hole , 1999, Nature.

[24]  William B. Sparks,et al.  HUBBLE SPACE TELESCOPE Observations of Superluminal Motion in the M87 Jet , 1999 .

[25]  William B. Sparks,et al.  Optical and Radio Polarimetry of the M87 Jet at 02 Resolution , 1999, astro-ph/9901176.

[26]  David L. Meier,et al.  A Magnetically Switched, Rotating Black Hole Model for the Production of Extragalactic Radio Jets and the Fanaroff and Riley Class Division , 1998, astro-ph/9810352.

[27]  L. Gurvits,et al.  Sub-Milliarcsecond Imaging of Quasars and Active Galactic Nuclei. IV. Fine-Scale Structure , 2005, astro-ph/0505536.

[28]  W. Sparks,et al.  The Supermassive Black Hole of M87 and the Kinematics of Its Associated Gaseous Disk , 1997, astro-ph/9706252.

[29]  R. Pudritz,et al.  Numerical Simulations of Astrophysical Jets from Keplerian Disks. I. Stationary Models , 1997 .

[30]  Kazunari Shibata,et al.  Magnetically Driven Jets from Accretion Disks. I. Steady Solutions and Application to Jets/Winds in Young Stellar Objects , 1997 .

[31]  J. Contopoulos A Simple Type of Magnetically Driven Jets: an Astrophysical Plasma Gun , 1995 .

[32]  J. Biretta,et al.  Detection of Proper Motions in the M87 Jet , 1995 .

[33]  R. Narayan,et al.  Advection-dominated Accretion: A Self-similar Solution , 1994, astro-ph/9403052.

[34]  R. Pudritz,et al.  Hydromagnetic disk winds in young stellar objects and active galactic nuclei , 1992 .

[35]  Frazer N. Owen,et al.  High-Resolution, High Dynamic Range VLA Images of the M87 Jet at 2 Centimeters , 1989 .

[36]  M. Reid,et al.  Subluminal Motion and Limb Brightening in the Nuclear Jet of M87 , 1989 .

[37]  A. Marscher,et al.  The Gasdynamics of Compact Relativistic Jets , 1988 .

[38]  R. Sanders THE RECONFINEMENT OF JETS , 1983 .

[39]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[40]  Eric Ronald Priest,et al.  Solar magneto-hydrodynamics , 1982 .

[41]  A. Konigl Relativistic jets as X-ray and gamma-ray sources. , 1981 .

[42]  Roger D. Blandford,et al.  Relativistic jets as compact radio sources , 1979 .

[43]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .