Model-independent Constraints on Dark Energy Density from Flux-averaging Analysis of Type Ia Supernova Data

We reconstruct the dark energy density X(z) as a free function from current Type Ia supernova (SN Ia) data, together with the cosmic microwave background (CMB) shift parameter from CMB data from the Wilkinson Microwave Anisotropy Probe (WMAP), Cosmic Background Imager (CBI), and Arcminute Cosmology Bolometer Array Receiver (ACBAR), and the large-scale structure (LSS) growth factor from the Two-Degree Field (2dF) galaxy survey data. We parameterize X(z) as a continuous function, given by interpolating its amplitudes at equally spaced z-values in the redshift range covered by SN Ia data, and a constant at larger z [where X(z) is only weakly constrained by CMB data]. We assume a flat universe and use the Markov Chain Monte Carlo (MCMC) technique in our analysis. We find that the dark energy density X(z) is constant for 0<~z<~0.5 and increases with redshift z for 0.5<~z<~1 at a 68.3% confidence level, but is consistent with a constant at a 95% confidence level. For comparison, we also give constraints on a constant equation of state for the dark energy. Flux averaging of SN Ia data is required to yield cosmological parameter constraints that are free of the bias induced by weak gravitational lensing. We set up a consistent framework for flux-averaging analysis of SN Ia data, based on the work of Wang. We find that flux averaging of SN Ia data leads to slightly lower m and smaller time variation in X(z). This suggests that a significant increase in the number of SNe Ia from deep SN surveys on a dedicated telescope is needed to place a robust constraint on the time dependence of the dark energy density.

[1]  J. Frieman,et al.  Cosmology with Decaying Vacuum Energy , 1987 .

[2]  R. Ellis,et al.  Parameter constraints for flat cosmologies from cosmic microwave background and 2dFGRS power spectra , 2002, astro-ph/0206256.

[3]  M. Sereno Probing the dark energy with strong lensing by clusters of galaxies , 2002, astro-ph/0209210.

[4]  Paul J. Steinhardt,et al.  Erratum: Limitations in Using Luminosity Distance to Determine the Equation of State of the Universe [Phys.Rev.Lett.86, 6 (2001)] , 2001 .

[5]  Michael S. Turner,et al.  PROBING DARK ENERGY: METHODS AND STRATEGIES , 2000, astro-ph/0012510.

[6]  Cosmology on a Brane in Minkowski Bulk , 2000, hep-th/0010186.

[7]  COBE-DMR-Normalized Dark Energy Cosmogony , 2003, astro-ph/0306147.

[8]  Measuring Time Dependence of Dark Energy Density from Type Ia Supernova Data , 2001, astro-ph/0101040.

[9]  Type Ia supernovae and the Hubble constant , 1972, astro-ph/9801065.

[10]  Yun Wang,et al.  Future Type Ia Supernova Data as Tests of Dark Energy from Modified Friedmann Equations , 2003, astro-ph/0302064.

[11]  A theoretician's analysis of the supernova data and the limitations in determining the nature of dark energy , 2002, astro-ph/0212573.

[12]  Supernova Pencil Beam Survey , 1998, astro-ph/9806185.

[13]  Robert R. Caldwell,et al.  Spintessence ! New models for dark matter and dark energy , 2002 .

[14]  S. Djorgovski,et al.  A Model-Independent Determination of the Expansion and Acceleration Rates of the Universe as a Function of Redshift and Constraints on Dark Energy , 2003, astro-ph/0305197.

[15]  Peter Garnavich,et al.  Cosmological Results from High-z Supernovae , 2003, astro-ph/0305008.

[16]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[17]  K. Freese,et al.  Cardassian expansion: a model in which the universe is flat, matter dominated, and accelerating , 2002, astro-ph/0201229.

[18]  William H. Press,et al.  Numerical recipes , 1990 .

[19]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[20]  P. Peebles,et al.  The Cosmological Constant and Dark Energy , 2002, astro-ph/0207347.

[21]  C. L. Kuo,et al.  High-Resolution Observations of the Cosmic Microwave Background Power Spectrum with ACBAR , 2002, astro-ph/0212289.

[22]  T. Loredo,et al.  Type Ia supernovae, evolution, and the cosmological constant , 1999, astro-ph/9905027.

[23]  Hee-Jong SeoDaniel J. Eisenstein Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003 .

[24]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[25]  The Anisotropy of the Microwave Background to l = 3500: Mosaic Observations with the Cosmic Background Imager , 2002, astro-ph/0205388.

[26]  BVRI Light Curves for 29 Type Ia Supernovae , 1996, astro-ph/9609064.

[27]  G. M. Bernstein,et al.  Dark Energy Constraints from Weak-Lensing Cross-Correlation Cosmography , 2003, astro-ph/0309332.

[28]  Probing quintessence: reconstruction and parameter estimation from supernovae , 2002, astro-ph/0201336.

[29]  Solving the coincidence problem: tracking oscillating energy. , 2000, Physical review letters.

[30]  Yun Wang,et al.  How Sensitive Are Weak Lensing Statistics to Dark Energy Content? , 2002, astro-ph/0206483.

[31]  Adam G. Riess,et al.  Twenty-Three High-Redshift Supernovae from the Institute for Astronomy Deep Survey: Doubling the Supernova Sample at z > 0.7 , 2004 .

[32]  Bharat Ratra,et al.  Cosmological Parameter Determination from Counts of Galaxies , 2001, astro-ph/0106549.

[33]  J. Weller,et al.  Large‐scale cosmic microwave background anisotropies and dark energy , 2003, astro-ph/0307104.

[34]  D. Weinberg,et al.  Prospects for Determining the Equation of State of the Dark Energy: What Can Be Learned from Multiple Observables? , 2001, astro-ph/0112221.

[35]  Measuring the equation of state of the universe: Pitfalls and prospects , 2001, astro-ph/0112526.

[36]  Paul J. Steinhardt,et al.  Cosmological imprint of an energy component with general equation of state , 1998 .

[37]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[38]  T. Padmanabhan Cosmological constant—the weight of the vacuum , 2002, hep-th/0212290.

[39]  O. Lahav,et al.  The 2dF Galaxy Redshift Survey: The bias of galaxies and the density of the Universe , 2001, astro-ph/0112161.

[40]  Supernova data may be unable to distinguish between quintessence and k-essence , 2000, astro-ph/0009256.

[41]  Constraints on the inner cluster mass profile and the power spectrum normalization from strong lensing statistics , 2003, astro-ph/0307301.

[42]  P. Peebles,et al.  Cosmology with a Time Variable Cosmological Constant , 1988 .

[43]  E. Mortsell,et al.  Probing the dark side: Constraints on the dark energy equation of state from CMB, large scale structure and Type Ia supernovae , 2002, astro-ph/0205096.

[44]  Toward a possible solution to the cosmic coincidence problem , 2002, astro-ph/0202052.

[45]  S. Carroll,et al.  Can the dark energy equation - of - state parameter w be less than -1? , 2003, astro-ph/0301273.

[46]  Statefinder—A new geometrical diagnostic of dark energy , 2002, astro-ph/0201498.

[47]  Constraining the shape of the CMB: A peak-by-peak analysis , 2002, astro-ph/0207286.

[48]  Measuring the metric: A parametrized post-Friedmannian approach to the cosmic dark energy problem , 2001, astro-ph/0101354.

[49]  The Effects of Inhomogeneities on Evaluating the Deceleration Parameter q$_0$ , 1995, astro-ph/9511108.

[50]  Current constraints on the dark energy equation of state , 2001, astro-ph/0110472.

[51]  23 High Redshift Supernovae from the IfA Deep Survey: Doubling the SN Sample at z>0.7 , 2003, astro-ph/0310843.

[52]  Constraints on the Cardassian Scenario from the Expansion Turnaround Redshift and the Sunyaev-Zeldovich/X-Ray Data , 2003, astro-ph/0312022.

[53]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[54]  D. Holz,et al.  A New method for determining cumulative gravitational lensing effects in inhomogeneous universes , 1997, astro-ph/9708036.

[55]  D. Holz,et al.  A Universal Probability Distribution Function for Weak-lensing Amplification , 2002, astro-ph/0204169.

[56]  Degeneracy inherent in the observational determination of the dark energy equation of state , 2002, astro-ph/0203137.

[57]  Mamoru Doi,et al.  New Constraints on ΩM, ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope , 2003 .

[58]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the Universe , 2002, astro-ph/0212375.

[59]  R. Cen,et al.  Effects of Weak Gravitational Lensing from Large-Scale Structure on the Determination of q0 , 1996, astro-ph/9607084.

[60]  J. Silk,et al.  A Fundamental Test of the Nature of Dark Matter , 1999, astro-ph/9901358.

[61]  Yun Wang,et al.  Flux-averaging Analysis of Type Ia Supernova Data , 1999, astro-ph/9907405.

[62]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[63]  Hill,et al.  Cosmology with ultralight pseudo Nambu-Goldstone bosons. , 1995, Physical review letters.

[64]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[65]  Yun Wang Analytical Modeling of the Weak Lensing of Standard Candles. I. Empirical Fitting of Numerical Simulation Results , 1999, astro-ph/9901212.