Structural insights into substrate binding by the molecular chaperone DnaK

[1]  Kurt Wüthrich,et al.  Processing of multi-dimensional NMR data with the new software PROSA , 1992 .

[2]  W. Burkholder,et al.  Specificity of DnaK-peptide binding. , 1994, Journal of molecular biology.

[3]  Bernd Bukau,et al.  The Hsp70 and Hsp60 Chaperone Machines , 1998, Cell.

[4]  J. Reinstein,et al.  Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[5]  E. Freire,et al.  Thermodynamic and structural analysis of the folding/unfolding transitions of the Escherichia coli molecular chaperone DnaK. , 1993, Journal of molecular biology.

[6]  S. Rüdiger,et al.  Interaction of Hsp70 chaperones with substrates , 1997, Nature Structural Biology.

[7]  S. Larsen,et al.  Structural basis for the function of Bacillus subtilis phosphoribosyl-pyrophosphate synthetase , 2000, Nature Structural Biology.

[8]  A. D. McLachlan,et al.  Introduction to magnetic resonance : with applications to chemistry and chemical physics , 1967 .

[9]  B. Bukau,et al.  Mutations altering heat shock specific subunit of RNA polymerase suppress major cellular defects of E. coli mutants lacking the DnaK chaperone. , 1990, The EMBO journal.

[10]  T. Rapoport,et al.  J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences. , 1998, Molecular cell.

[11]  K. Wüthrich,et al.  The program FANTOM for energy refinement of polypeptides and proteins using a Newton – Raphson minimizer in torsion angle space , 1990 .

[12]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[13]  K Wüthrich,et al.  The program XEASY for computer-supported NMR spectral analysis of biological macromolecules , 1995, Journal of biomolecular NMR.

[14]  J. Reinstein,et al.  The role of ATP in the functional cycle of the DnaK chaperone system. , 1995, Journal of molecular biology.

[15]  Hong Wang,et al.  NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction. , 1998, Biochemistry.

[16]  B. Rost,et al.  Prediction of protein secondary structure at better than 70% accuracy. , 1993, Journal of molecular biology.

[17]  K. Flaherty,et al.  Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein , 1990, Nature.

[18]  F. Dahlquist,et al.  Topology and dynamics of the 10 kDa C‐terminal domain of DnaK in solution , 2008, Protein science : a publication of the Protein Society.

[19]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[20]  Wolfgang Voos,et al.  The Protein Import Motor of Mitochondria Unfolding and Trapping of Preproteins Are Distinct and Separable Functions of Matrix Hsp70 , 1999, Cell.

[21]  K. Wüthrich,et al.  Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. , 1989, Biochemistry.

[22]  W. Burkholder,et al.  Mutations in the C-terminal fragment of DnaK affecting peptide binding. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Mark J Howard,et al.  Protein NMR spectroscopy , 1998, Current Biology.

[24]  L. Gierasch,et al.  Mutations in the substrate binding domain of the Escherichia coli 70 kDa molecular chaperone, DnaK, which alter substrate affinity or interdomain coupling. , 1999, Journal of molecular biology.

[25]  J. Rothman,et al.  Peptide-binding specificity of the molecular chaperone BiP , 1991, Nature.

[26]  Craig M. Ogata,et al.  Structural Analysis of Substrate Binding by the Molecular Chaperone DnaK , 1996, Science.

[27]  J. Reinstein,et al.  Nucleotide-induced Conformational Changes in the ATPase and Substrate Binding Domains of the DnaK Chaperone Provide Evidence for Interdomain Communication (*) , 1995, The Journal of Biological Chemistry.

[28]  Hong Wang,et al.  High-resolution solution structure of the 18 kDa substrate-binding domain of the mammalian chaperone protein Hsc70. , 1999, Journal of molecular biology.

[29]  P. Christen,et al.  Sequence-specific rates of interaction of target peptides with the molecular chaperones DnaK and DnaJ. , 1998, Biochemistry.

[30]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.