Foundations of Context-aware Preference Propagation

Preferences are a fundamental ingredient in a variety of fields, ranging from economics to computer science, for deciding the best choices among possible alternatives. Contexts provide another important aspect to be considered in the selection of the best choices, since, very often, preferences are affected by context. In particular, the problem of preference propagation from more generic to more specific contexts naturally arises. Such a problem has only been addressed in a very limited way and always resorts to practical, ad hoc approaches. To fill this gap, in this article, we analyze preference propagation in a principled way and adopt an abstract context model without making any specific assumptions on how preferences are stated. Our framework only requires that the contexts form a partially ordered set and that preferences define a strict partial order on the objects of interest. We first formalize the basic properties that any propagation process should satisfy. We then introduce an algebraic model for preference propagation that relies on two abstract operators for combining preferences, and, under mild assumptions, we prove that the only possible interpretations for such operators are the well-known Pareto and Prioritized composition. We then study several propagation methods based on such operators and precisely characterize them in terms of the stated properties. We finally identify a method meeting all the requirements, on the basis of which we provide an efficient algorithm for preference propagation.

[1]  Davide Martinenghi,et al.  Querying Context-Aware Databases , 2009, FQAS.

[2]  Evaggelia Pitoura,et al.  Adding Context to Preferences , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[3]  Carlo Curino,et al.  A data-oriented survey of context models , 2007, SGMD.

[4]  Jadwiga Indulska,et al.  A survey of context modelling and reasoning techniques , 2010, Pervasive Mob. Comput..

[5]  Georgia Koutrika,et al.  Personalizing queries based on networks of composite preferences , 2010, TODS.

[6]  Ilaria Bartolini,et al.  Efficient sort-based skyline evaluation , 2008, TODS.

[7]  Werner Kießling,et al.  Foundations of Preferences in Database Systems , 2002, VLDB.

[8]  Constantin Zopounidis,et al.  Multicriteria classification and sorting methods: A literature review , 2002, Eur. J. Oper. Res..

[9]  Georgia Koutrika,et al.  A survey on representation, composition and application of preferences in database systems , 2011, TODS.

[10]  Gabriel Tamura,et al.  Characterizing context-aware recommender systems: A systematic literature review , 2018, Knowl. Based Syst..

[11]  Minyi Guo,et al.  RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems , 2018, CIKM.

[12]  Evaggelia Pitoura,et al.  PerK: personalized keyword search in relational databases through preferences , 2010, EDBT '10.

[13]  Ling Feng,et al.  Ranking Query Results using Context-Aware Preferences , 2007, 2007 IEEE 23rd International Conference on Data Engineering Workshop.

[14]  Riccardo Torlone,et al.  Which are my preferred items , 2002 .

[15]  Ronen I. Brafman,et al.  CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements , 2011, J. Artif. Intell. Res..

[16]  G. Foxall,et al.  A study of preferences in a simulated online shopping experiment , 2011 .

[17]  Toby Walsh,et al.  Aggregating Partially Ordered Preferences , 2009, J. Log. Comput..

[18]  Wei Sun,et al.  Solving satisfiability and implication problems in database systems , 1996, TODS.

[19]  Enrico Pontelli,et al.  Multi-Context Systems with Preferences , 2018, Fundam. Informaticae.

[20]  Thomas Eiter,et al.  Equilibria in Heterogeneous Nonmonotonic Multi-Context Systems , 2007, AAAI.

[21]  Riccardo Torlone,et al.  Modeling the Propagation of User Preferences , 2011, ER.

[22]  Jan Chomicki,et al.  Preference formulas in relational queries , 2003, TODS.

[23]  Werner Kießling,et al.  Preference Queries with SV-Semantics , 2005, COMAD.

[24]  Dimitris Sacharidis,et al.  Probabilistic contextual skylines , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[25]  Wolf-Tilo Balke,et al.  Exploiting Indifference for Customization of Partial Order Skylines , 2006, 2006 10th International Database Engineering and Applications Symposium (IDEAS'06).

[26]  L. A. Goodman,et al.  Social Choice and Individual Values , 1951 .

[27]  Arkady B. Zaslavsky,et al.  Context Aware Computing for The Internet of Things: A Survey , 2013, IEEE Communications Surveys & Tutorials.

[28]  Gabriella Pigozzi,et al.  Preferences in artificial intelligence , 2016, Annals of Mathematics and Artificial Intelligence.

[29]  Letizia Tanca,et al.  A methodology for preference-based personalization of contextual data , 2009, EDBT '09.

[30]  BettiniClaudio,et al.  A survey of context modelling and reasoning techniques , 2010 .

[31]  Davide Martinenghi,et al.  Querying Databases with Taxonomies , 2010, ER.

[32]  Toby Walsh,et al.  Preferences in Constraint Satisfaction and Optimization , 2008, AI Mag..

[33]  Jan Chomicki,et al.  Discovering Relative Importance of Skyline Attributes , 2009, Proc. VLDB Endow..

[34]  Ihab F. Ilyas,et al.  A survey of top-k query processing techniques in relational database systems , 2008, CSUR.

[35]  Donald Kossmann,et al.  The Skyline operator , 2001, Proceedings 17th International Conference on Data Engineering.

[36]  Gediminas Adomavicius,et al.  Context-aware recommender systems , 2008, RecSys '08.

[37]  Letizia Tanca,et al.  A data-mining approach to preference-based data ranking founded on contextual information , 2013, Inf. Syst..

[38]  Alexis Tsoukiàs,et al.  Preference Modelling , 2004, Preferences.

[39]  Davide Martinenghi,et al.  Reconciling Skyline and Ranking Queries , 2017, Proc. VLDB Endow..

[40]  Federica Cena,et al.  Anisotropic propagation of user interests in ontology-based user models , 2013, Inf. Sci..

[41]  L. An,et al.  Modeling human decisions in coupled human and natural systems : Review of agent-based models , 2012 .

[42]  Wolfram Burgard,et al.  Robot, organize my shelves! Tidying up objects by predicting user preferences , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[43]  Liang Jeff Chen,et al.  Context-sensitive ranking , 2012 .

[44]  Kenneth J. Arrow,et al.  Utilities, Attitudes, Choices: A Review Note , 1958 .

[45]  Evaggelia Pitoura,et al.  Fast contextual preference scoring of database tuples , 2008, EDBT '08.

[46]  L. Ou,et al.  A study of colour emotion and colour preference. Part III: Colour preference modeling , 2004 .

[47]  Davide Martinenghi,et al.  Taxonomy-based relaxation of query answering in relational databases , 2013, The VLDB Journal.

[48]  Alex Alves Freitas,et al.  A critical review of multi-objective optimization in data mining: a position paper , 2004, SKDD.

[49]  Joffre Swait,et al.  Using stated preference and revealed preference modeling to evaluate prescribing decisions. , 2004, Health economics.

[50]  Ling Feng,et al.  A Context-Aware Preference Model for Database Querying in an Ambient Intelligent Environment , 2006, DEXA.

[51]  Xiang Li,et al.  Contextual Ranking of Database Querying Results: A Statistical Approach , 2008, EuroSSC.