Polyhedral modelling with exact arithmetic

We show that a boundary-based polyhedral solid modeller can be implemented using exact, multiprecision integer arithmetic with minimal performance overhead compared to a floating-point arithmetic implementation, Exact arithmetic guarantees numerical reliability with no additional algorithmic requirements. Exact arithmetic also simplifies some implementation details; for example, symbolic perturbation obviates degenerate-case handling. The performance cost of multiprecision arithmetic is reduced by appropriate tuningfor example, a floating-point filter eliminates many invocations of multiprecision arithmetic-and by algorithm design to minimize the arithmetic bit-length required by geometric primitives.

[1]  Christopher J. Van Wyk,et al.  Efficient exact arithmetic for computational geometry , 1993, SCG '93.

[2]  Kokichi Sugihara,et al.  On Finite-Precision Representations of Geometric Objects , 1989, J. Comput. Syst. Sci..

[3]  Philippe Jaillon,et al.  A "Lazy" Solution to Imprecision in Computational Geometry , 1993 .

[4]  Kokichi Sugihara,et al.  A solid modelling system free from topological inconsistency , 1990 .

[5]  Jorge Stolfi,et al.  Oriented projective geometry , 1987, SCG '87.

[6]  John E. Hopcroft,et al.  Robust set operations on polyhedral solids , 1987, IEEE Computer Graphics and Applications.

[7]  Victor J. Milenkovic,et al.  Verifiable Implementations of Geometric Algorithms Using Finite Precision Arithmetic , 1989, Artif. Intell..

[8]  Lee R. Nackman,et al.  Efficient Delaunay triangulation using rational arithmetic , 1991, TOGS.

[9]  Chee-Keng Yap,et al.  A geometric consistency theorem for a symbolic perturbation scheme , 1988, SCG '88.

[10]  Christopher J. Van Wyk,et al.  Robust Implementation of Geometric Algorithms Using Exact Arithmetic , 1994, IMA Conference on the Mathematics of Surfaces.

[11]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling: An Introduction , 1989 .

[12]  John F. Canny,et al.  An efficient approach to removing geometric degeneracies , 1992, SCG '92.

[13]  Kurt Mehlhorn,et al.  How to Compute the Voronoi Diagram of Line Segments: Theoretical and Experimental Results , 1994, ESA.

[14]  Steven Fortune,et al.  Numerical stability of algorithms for 2D Delaunay triangulations , 1992, SCG '92.

[15]  Claus-Peter Schnorr,et al.  Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems , 1991, FCT.

[16]  László Lovász,et al.  Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.

[17]  Lee R. Nackman,et al.  Finding compact coordinate representations for polygons and polyhedra , 1990 .

[18]  Christoph M. Hoffmann,et al.  The problems of accuracy and robustness in geometric computation , 1989, Computer.

[19]  Chee Yap,et al.  The exact computation paradigm , 1995 .

[20]  M. Iri,et al.  Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.

[21]  Raimund Seidel,et al.  The Nature and Meaning of Perturbations in Geometric Computing , 1994, STACS.