On the coagulation efficiency of carbonaceous nanoparticles

[1]  Jingkun Jiang,et al.  Nascent soot particle size distributions down to 1 nm from a laminar premixed burner-stabilized stagnation ethylene flame , 2017 .

[2]  M. Thomson,et al.  Modeling of soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame with detailed PAH chemistry and an advanced sectional aerosol dynamics model , 2009 .

[3]  M. Frenklach Method of moments with interpolative closure , 2002 .

[4]  H. Bockhorn,et al.  Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons , 2000 .

[5]  Markus Kraft,et al.  A two-step simulation methodology for modelling stagnation flame synthesised aggregate nanoparticles , 2019, Combustion and Flame.

[6]  Stephen J. Harris,et al.  The Coagulation of Soot Particles with van der Waals Forces , 1988 .

[7]  Jack B. Howard,et al.  Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways , 2000 .

[8]  Christopher J. Hogan,et al.  Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations. , 2018, The Journal of chemical physics.

[9]  Jasdeep Singh,et al.  Extending stochastic soot simulation to higher pressures , 2006 .

[10]  Nick A. Eaves,et al.  Application of PAH-condensation reversibility in modeling soot growth in laminar premixed and nonpremixed flames , 2016 .

[11]  B. W. V. D. Waal Calculated ground‐state structures of 13‐molecule clusters of carbon dioxide, methane, benzene, cyclohexane, and naphthalene , 1983 .

[12]  C. Law,et al.  Quantitative measurement of particle size distributions of carbonaceous nanoparticles during ethylene pyrolysis in a laminar flow reactor , 2019, Combustion and Flame.

[13]  M. Sirignano,et al.  Coagulation of combustion generated nanoparticles in low and intermediate temperature regimes: An experimental study , 2013 .

[14]  M. Mozurkewich,et al.  Measurement of the coagulation rate constant for sulfuric acid particles as a function of particle size using tandem differential mobility analysis , 2001 .

[15]  Sebastian Mosbach,et al.  A fully coupled simulation of PAH and soot growth with a population balance model , 2013 .

[16]  Christopher J. Hogan,et al.  Nanoparticle collisions in the gas phase in the presence of singular contact potentials. , 2012, The Journal of chemical physics.

[17]  Markus Kraft,et al.  A detailed particle model for polydisperse aggregate particles , 2019, J. Comput. Phys..

[18]  Zhen Huang,et al.  Mobility size and mass of nascent soot particles in a benchmark premixed ethylene flame , 2015 .

[19]  R. Lindstedt,et al.  Modeling of soot particle size distributions in premixed stagnation flow flames , 2013 .

[20]  J. Kent,et al.  A model of particulate and species formation applied to laminar, nonpremixed flames for three aliphatic-hydrocarbon fuels , 2008 .

[21]  M. Sirignano,et al.  Simulating the morphology of clusters of polycyclic aromatic hydrocarbons: The influence of the intermolecular potential , 2017 .

[22]  W. Marlow Lifshitz–van der Waals forces in aerosol particle collisions. I. Introduction: Water droplets , 1980 .

[23]  Markus Kraft,et al.  Modelling soot formation in a benchmark ethylene stagnation flame with a new detailed population balance model , 2019, Combustion and Flame.

[24]  Marlow,et al.  Cluster-collision frequency. II. Estimation of the collision rate. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[25]  M. Kraft,et al.  A First Principles Development of a General Anisotropic Potential for Polycyclic Aromatic Hydrocarbons. , 2010, Journal of chemical theory and computation.

[26]  H. C. Hamaker The London—van der Waals attraction between spherical particles , 1937 .

[27]  Michael Frenklach,et al.  Reaction mechanism of soot formation in flames , 2002 .

[28]  M. Thomson,et al.  Detailed modeling of CO2 addition effects on the evolution of soot particle size distribution functions in premixed laminar ethylene flames , 2017 .

[29]  Hwa-Chi Wang,et al.  Filtration efficiency of nanometer-size aerosol particles , 1991 .

[30]  M. Sceats Brownian coagulation in aerosols—the role of long range forces , 1989 .

[31]  K. Okuyama,et al.  Change in size distribution of ultrafine aerosol particles undergoing brownian coagulation , 1984 .

[32]  Michael Frenklach,et al.  Numerical simulations of soot aggregation in premixed laminar flames , 2007 .

[33]  M. Kraft,et al.  A stochastic approach to calculate the particle size distribution function of soot particles in laminar premixed flames , 2003 .

[34]  Markus Kraft,et al.  Developing the PAH-PP soot particle model using process informatics and uncertainty propagation , 2011 .

[35]  J. Israelachvili Intermolecular and surface forces , 1985 .

[36]  M. Frenklach,et al.  Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation With the Method of Moments and Application to High-Pressure Laminar Premixed Flames , 1998 .

[37]  Hai Wang Formation of nascent soot and other condensed-phase materials in flames , 2011 .

[38]  C. Law,et al.  Dimerization of polycyclic aromatic hydrocarbons in soot nucleation. , 2014, The journal of physical chemistry. A.

[39]  E. Ruckenstein,et al.  The Brownian coagulation of aerosols over the entire range of Knudsen numbers: Connection between the sticking probability and the interaction forces , 1985 .

[40]  N. Fuchs,et al.  Coagulation rate of highly dispersed aerosols , 1965 .

[41]  X. You,et al.  Effects of CO2 addition on the evolution of particle size distribution functions in premixed ethylene flame , 2016 .

[42]  M. Kraft,et al.  A quantitative study of the clustering of polycyclic aromatic hydrocarbons at high temperatures. , 2012, Physical chemistry chemical physics : PCCP.

[43]  M. Frenklach,et al.  Detailed modeling of soot particle nucleation and growth , 1991 .

[44]  M. Kerker,et al.  Brownian coagulation of aerosols in rarefied gases , 1977 .

[45]  M. L. Laucks,et al.  Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles , 2000 .

[46]  M. Thomson,et al.  A numerical study of soot aggregate formation in a laminar coflow diffusion flame , 2009 .

[47]  Michael P. Tolocka,et al.  Chemical species associated with the early stage of soot growth in a laminar premixed ethylene–oxygen–argon flame , 2005 .

[48]  On the Effective Density of Soot Particles in Premixed Ethylene Flames , 2018, Combustion and Flame.

[49]  E. Ranzi,et al.  Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame , 2015 .

[50]  Marlow,et al.  Cluster-collision frequency. I. The long-range intercluster potential. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[51]  X. You,et al.  Reaction kinetics of hydrogen abstraction from polycyclic aromatic hydrocarbons by H atoms. , 2017, Physical chemistry chemical physics : PCCP.

[52]  Markus Kraft,et al.  A statistical approach to develop a detailed soot growth model using PAH characteristics , 2009 .

[53]  J. Akroyd,et al.  Numerical simulation and parametric sensitivity study of particle size distributions in a burner-stabilised stagnation flame , 2015 .

[54]  Brownian coagulation in a field of force , 1986 .

[55]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[56]  A. C. Barone,et al.  Surface deposition and coagulation efficiency of combustion generated nanoparticles in the size range from 1 to 10 nm , 2005 .

[57]  Q. Yao,et al.  Role of dipole-dipole interaction on enhancing Brownian coagulation of charge-neutral nanoparticles in the free molecular regime. , 2011, The Journal of chemical physics.

[58]  Andrea D’Anna,et al.  Combustion-formed nanoparticles , 2009 .

[59]  C. Law,et al.  Role of Carbon-Addition and Hydrogen-Migration Reactions in Soot Surface Growth. , 2016, The journal of physical chemistry. A.