Screening for heterotrophy in microalgae of various taxonomic positions and potential of mixotrophy for production of high-value compounds

[1]  P. Capek,et al.  Biopolymer of Dictyosphaerium chlorelloides - chemical characterization and biological effects. , 2018, International journal of biological macromolecules.

[2]  P. Pribyl,et al.  The role of light and nitrogen in growth and carotenoid accumulation in Scenedesmus sp. , 2016 .

[3]  V. Zachleder,et al.  Elevated production of carotenoids by a new isolate of Scenedesmus sp. , 2015 .

[4]  M. Eliáš,et al.  The diversity and phylogeny of the commercially important algal class Eustigmatophyceae, including the new clade Goniochloridales , 2014, Journal of Applied Phycology.

[5]  Wei Chen,et al.  A financial assessment of two alternative cultivation systems and their contributions to algae biofuel economic viability , 2014 .

[6]  P. Pribyl,et al.  Optimization of cultivation conditions for fatty acid composition and EPA production in the eustigmatophycean microalga Trachydiscus minutus , 2014, Journal of Applied Phycology.

[7]  B. Cheirsilp,et al.  Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. , 2012, Bioresource technology.

[8]  V. Zachleder,et al.  Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris , 2012, Applied Microbiology and Biotechnology.

[9]  V. Zachleder,et al.  Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations , 2011, Applied Microbiology and Biotechnology.

[10]  S. Boussiba,et al.  The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. , 2011, Applied Microbiology and Biotechnology.

[11]  C. Howe,et al.  Life-Cycle Assessment of Potential Algal Biodiesel Production in the United Kingdom: A Comparison of Raceways and Air-Lift Tubular Bioreactors , 2010 .

[12]  N. T. Eriksen,et al.  Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin , 2007, Applied Microbiology and Biotechnology.

[13]  Choul-Gyun Lee,et al.  Evaluation of central metabolism based on a genomic database ofSynechocystis PCC6803 , 2007 .

[14]  H. R. Gislerød,et al.  Fatty acid composition of 12 microalgae for possible use in aquaculture feed , 2007, Aquaculture International.

[15]  Zheng-yun Wu,et al.  Optimization for high‐density cultivation of heterotrophic Chlorella based on a hybrid neural network model , 2007, Letters in applied microbiology.

[16]  J. Kvíderová,et al.  The comparison of ecological characteristics of Stichococcus (Chlorophyta) strains isolated from polar and temperate regions , 2005 .

[17]  Xu Fang,et al.  Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp. , 2004, Journal of Applied Phycology.

[18]  O. Pulz,et al.  Valuable products from biotechnology of microalgae , 2004, Applied Microbiology and Biotechnology.

[19]  D. Kelly,et al.  A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? , 2004, FEMS microbiology reviews.

[20]  Lolke Sijtsma,et al.  High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. , 2003, Biotechnology and bioengineering.

[21]  D. Hall,et al.  Production of eicosapentaenoic acid (EPA) in Monodus subterraneus grown in a helical tubular photobioreactor as affected by cell density and light intensity , 2001, Journal of Applied Phycology.

[22]  Norihiko Hata,et al.  Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture , 2001, Journal of Applied Phycology.

[23]  Z. Wen,et al.  A perfusion–cell bleeding culture strategy for enhancing the productivity of eicosapentaenoic acid by Nitzschia laevis , 2001, Applied Microbiology and Biotechnology.

[24]  Yuan-Kun Lee Microalgal mass culture systems and methods: Their limitation and potential , 2001, Journal of Applied Phycology.

[25]  A. Grossman,et al.  Trophic Conversion of an Obligate Photoautotrophic Organism Through Metabolic Engineering , 2001, Science.

[26]  D. Kyle The Large-Scale Production and Use of a Single-Cell Oil Highly Enriched in Docosahexaenoic Acid , 2001 .

[27]  R. Jeanjean,et al.  Obligate phototrophy in cyanobacteria: more than a lack of sugar transport. , 1998, FEMS microbiology letters.

[28]  Feng Chen,et al.  Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture , 1996 .

[29]  W. Gross,et al.  Heterotrophic Growth of Two Strains of the Acido-Thermophilic Red Alga Galdieria sulphuraria , 1995 .

[30]  Raymond M. Gladue,et al.  Microalgal feeds for aquaculture , 1993, Journal of Applied Phycology.

[31]  C. R. Benedict Nature of Obligate Photoautotrophy , 1978 .

[32]  E. Padan,et al.  Active transport of glucose and alpha-methylglucoside in the cyanobacterium Plectonema boryanum. , 1978, The Journal of biological chemistry.

[33]  A. Abeliovich,et al.  Role of heterotrophic nutrition in growth of the alga Scenedesmus obliquus in high-rate oxidation ponds , 1978, Applied and environmental microbiology.

[34]  D. L. Lynch,et al.  Heterotrophic Nutrition in the Genus Coelastrum Naeg , 1967 .

[35]  P. J. Casselton CHEMO‐ORGANOTROPHIC GROWTH OF XANTHOPHYCEAN ALGAE , 1966 .

[36]  Robert Staub Ernährungsphysiologisch-autökologische Untersuchungen an der planktischen Blaualge Oscillatoria rubescens DC. , 1961 .

[37]  R. Emerson THE EFFECT OF CERTAIN RESPIRATORY INHIBITORS ON THE RESPIRATION OF CHLORELLA , 1927, The Journal of general physiology.

[38]  J. Doucha,et al.  Production of high-density Chlorella culture grown in fermenters , 2010, Journal of Applied Phycology.

[39]  G. E. Fogg,et al.  Studies on the growth of Xanthophyceae in pure culture , 2004, Archiv für Mikrobiologie.

[40]  J. Miller,et al.  Studies on the growth of Xanthophyceae in pure culture , 2004, Archiv für Mikrobiologie.

[41]  G. E. Fogg,et al.  Studies on the growth of Xanthophyceae in pure culture , 2004, Archiv für Mikrobiologie.

[42]  M. Orús,et al.  Nitrogen compounds in heterotrophic Scenedesmus quadricauda UAM 103 , 1990 .

[43]  A. Smith,et al.  Transport of D-glucose and 3-O-methyl-D-glucose in the cyanobacteria Aphanocapsa 6714 and Nostoc strain Mac. , 1978, European journal of biochemistry.

[44]  O. Holm‐Hansen Ecology, physiology, and biochemistry of blue-green algae. , 1968, Annual review of microbiology.