Building blocks for the mind

Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, June 2017.

[1]  G. Rizzolatti,et al.  Mirror neurons: from discovery to autism , 2009, Experimental Brain Research.

[2]  Eric Horvitz,et al.  Display of Information for Time-Critical Decision Making , 1995, UAI.

[3]  Oren Etzioni,et al.  Paraphrase-Driven Learning for Open Question Answering , 2013, ACL.

[4]  Cristina Cornelio,et al.  Dynamic and Probabilistic CP-nets , 2012 .

[5]  Robert R. Sokal,et al.  A statistical method for evaluating systematic relationships , 1958 .

[6]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[7]  Ryen W. White,et al.  Web-scale pharmacovigilance: listening to signals from the crowd , 2013, J. Am. Medical Informatics Assoc..

[8]  Yoshua Bengio,et al.  Gradient Flow in Recurrent Nets: the Difficulty of Learning Long-Term Dependencies , 2001 .

[9]  Brian Charles Williams,et al.  A Scheduler for Actions with Iterated Durations , 2014, AAAI.

[10]  M. Marelli,et al.  SemEval-2014 Task 1: Evaluation of Compositional Distributional Semantic Models on Full Sentences through Semantic Relatedness and Textual Entailment , 2014, *SEMEVAL.

[11]  Lenhart K. Schubert,et al.  The TRAINS Project , 1991 .

[12]  Geoffrey E. Hinton,et al.  Grammar as a Foreign Language , 2014, NIPS.

[13]  Boris Katz,et al.  Natural Language Annotations for Question Answering , 2006, FLAIRS Conference.

[14]  Cheng Fang,et al.  Resolving Uncontrollable Conditional Temporal Problems Using Continuous Relaxations , 2014, ICAPS.

[15]  Alex Graves,et al.  DRAW: A Recurrent Neural Network For Image Generation , 2015, ICML.

[16]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[17]  James Bennett,et al.  The Netflix Prize , 2007 .

[18]  Boris Katz,et al.  Annotating the World Wide Web using Natural Language , 1997, RIAO.

[19]  George N. Votsis,et al.  Emotion recognition in human-computer interaction , 2001, IEEE Signal Process. Mag..

[20]  Christopher Potts,et al.  Bringing Machine Learning and Compositional Semantics Together , 2015 .

[21]  Fei-Fei Li,et al.  Deep visual-semantic alignments for generating image descriptions , 2015, CVPR.

[22]  Jeffrey Pennington,et al.  Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions , 2011, EMNLP.

[23]  B. Forrin,et al.  Information processing behavior: the role of irrelevant stimulus information. , 1961, Journal of experimental psychology.

[24]  Claire Cardie,et al.  Bidirectional Recursive Neural Networks for Token-Level Labeling with Structure , 2013, ArXiv.

[25]  G. Rizzolatti,et al.  Action recognition in the premotor cortex. , 1996, Brain : a journal of neurology.

[26]  Jason Weston,et al.  Natural Language Processing (Almost) from Scratch , 2011, J. Mach. Learn. Res..

[27]  Nitish Srivastava,et al.  Learning Generative Models with Visual Attention , 2013, NIPS.

[28]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[29]  Matthew Richardson,et al.  MCTest: A Challenge Dataset for the Open-Domain Machine Comprehension of Text , 2013, EMNLP.

[30]  Christian Osendorfer,et al.  On Fast Dropout and its Applicability to Recurrent Networks , 2013, ICLR.

[31]  Charles Kemp,et al.  How to Grow a Mind: Statistics, Structure, and Abstraction , 2011, Science.

[32]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[33]  David Frohlich,et al.  MIXED INITIATIVE INTERACTION , 1991 .

[34]  Jason Weston,et al.  Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks , 2015, ICLR.

[35]  Samy Bengio,et al.  Show and tell: A neural image caption generator , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Charles Kemp,et al.  The discovery of structural form , 2008, Proceedings of the National Academy of Sciences.

[37]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[38]  M. Randic,et al.  Resistance distance , 1993 .

[39]  Kathleen R. McKeown,et al.  Information fusion for multidocument summarization: paraphrasing and generation , 2003 .

[40]  Jimmy J. Lin,et al.  Omnibase: Uniform Access to Heterogeneous Data for Question Answering , 2002, NLDB.

[41]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[42]  Bing Liu,et al.  Opinion observer: analyzing and comparing opinions on the Web , 2005, WWW '05.

[43]  Christopher Kermorvant,et al.  Dropout Improves Recurrent Neural Networks for Handwriting Recognition , 2013, 2014 14th International Conference on Frontiers in Handwriting Recognition.

[44]  Jürgen Schmidhuber,et al.  LSTM: A Search Space Odyssey , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[45]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[46]  J. Tenenbaum,et al.  Theory-based Bayesian models of inductive learning and reasoning , 2006, Trends in Cognitive Sciences.

[47]  Richard Socher,et al.  Ask Me Anything: Dynamic Memory Networks for Natural Language Processing , 2015, ICML.

[48]  Jaime R. Carbonell,et al.  AI in CAI : An artificial intelligence approach to computer-assisted instruction , 1970 .

[49]  Hugo Larochelle,et al.  A Neural Autoregressive Approach to Attention-based Recognition , 2015, International Journal of Computer Vision.

[50]  Noah D. Goodman,et al.  Theory learning as stochastic search in the language of thought , 2012 .

[51]  Peng Yu,et al.  Continuously Relaxing Over-Constrained Conditional Temporal Problems through Generalized Conflict Learning and Resolution , 2013, IJCAI.

[52]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[53]  Jianfeng Gao,et al.  A Neural Network Approach to Context-Sensitive Generation of Conversational Responses , 2015, NAACL.

[54]  J. Tenenbaum,et al.  Structured statistical models of inductive reasoning. , 2009, Psychological review.

[55]  Navneet Kaur,et al.  Opinion mining and sentiment analysis , 2016, 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom).

[56]  Jason Weston,et al.  Question Answering with Subgraph Embeddings , 2014, EMNLP.

[57]  Quoc V. Le,et al.  A Neural Conversational Model , 2015, ArXiv.

[58]  Alex Graves,et al.  Recurrent Models of Visual Attention , 2014, NIPS.

[59]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[60]  Christopher D. Manning,et al.  Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks , 2015, ACL.

[61]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.

[62]  Pierre Sermanet,et al.  Attention for Fine-Grained Categorization , 2014, ICLR.

[63]  Douglas E. Appelt,et al.  FASTUS: A System for Extracting Information from Natural-Language Text , 1992 .

[64]  SaltonGerard,et al.  Term-weighting approaches in automatic text retrieval , 1988 .

[65]  Quoc V. Le,et al.  Exploiting Similarities among Languages for Machine Translation , 2013, ArXiv.

[66]  Alex Graves,et al.  Generating Sequences With Recurrent Neural Networks , 2013, ArXiv.

[67]  Eric Horvitz,et al.  The Lumière Project: Bayesian User Modeling for Inferring the Goals and Needs of Software Users , 1998, UAI.

[68]  Ellen M. Voorhees,et al.  Building a question answering test collection , 2000, SIGIR '00.

[69]  Nitish Srivastava,et al.  Improving Neural Networks with Dropout , 2013 .

[70]  Mirella Lapata,et al.  Composition in Distributional Models of Semantics , 2010, Cogn. Sci..

[71]  Claire Cardie,et al.  Modeling Compositionality with Multiplicative Recurrent Neural Networks , 2014, ICLR.

[72]  Javier Hernandez,et al.  Mood meter: counting smiles in the wild , 2012, UbiComp.

[73]  Jason Weston,et al.  Large-scale Simple Question Answering with Memory Networks , 2015, ArXiv.

[74]  Phil Blunsom,et al.  Reasoning about Entailment with Neural Attention , 2015, ICLR.

[75]  Quoc V. Le,et al.  Distributed Representations of Sentences and Documents , 2014, ICML.

[76]  Hugo Larochelle,et al.  A Neural Autoregressive Topic Model , 2012, NIPS.

[77]  Panagiotis G. Ipeirotis,et al.  Show me the money!: deriving the pricing power of product features by mining consumer reviews , 2007, KDD '07.

[78]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[79]  Razvan Pascanu,et al.  On the difficulty of training recurrent neural networks , 2012, ICML.

[80]  Maciej Kula,et al.  Metadata Embeddings for User and Item Cold-start Recommendations , 2015, CBRecSys@RecSys.

[81]  Joelle Pineau,et al.  Hierarchical Neural Network Generative Models for Movie Dialogues , 2015, ArXiv.

[82]  Brian D. Ehret Learning where to look , 1999, CHI EA '99.

[83]  Phil Blunsom,et al.  A Convolutional Neural Network for Modelling Sentences , 2014, ACL.

[84]  Noah A. Smith,et al.  Transition-Based Dependency Parsing with Stack Long Short-Term Memory , 2015, ACL.

[85]  James A. Reggia,et al.  A generalized LSTM-like training algorithm for second-order recurrent neural networks , 2012, Neural Networks.

[86]  Fabio Tozeto Ramos,et al.  Airborne vision‐based mapping and classification of large farmland environments , 2010, J. Field Robotics.

[87]  Jason Weston,et al.  Memory Networks , 2014, ICLR.

[88]  Zoubin Ghahramani,et al.  Semi-supervised learning : from Gaussian fields to Gaussian processes , 2003 .

[89]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[90]  Claire Cardie,et al.  Deep Recursive Neural Networks for Compositionality in Language , 2014, NIPS.

[91]  Wojciech Zaremba,et al.  Recurrent Neural Network Regularization , 2014, ArXiv.

[92]  Shrikanth S. Narayanan,et al.  A System for Real-time Twitter Sentiment Analysis of 2012 U.S. Presidential Election Cycle , 2012, ACL.

[93]  Ronen I. Brafman,et al.  CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements , 2011, J. Artif. Intell. Res..

[94]  Masatoshi Yoshikawa,et al.  Adaptive web search based on user profile constructed without any effort from users , 2004, WWW '04.

[95]  Jun Wang,et al.  Self-taught hashing for fast similarity search , 2010, SIGIR.

[96]  Matthew D. Zeiler ADADELTA: An Adaptive Learning Rate Method , 2012, ArXiv.

[97]  Bernardo A. Huberman,et al.  Echo: the editor's wisdom with the elegance of a magazine , 2013, EICS '13.

[98]  John Riedl,et al.  Analysis of recommendation algorithms for e-commerce , 2000, EC '00.

[99]  Geoffrey E. Hinton,et al.  Replicated Softmax: an Undirected Topic Model , 2009, NIPS.

[100]  Thierry Vidal,et al.  Handling contingency in temporal constraint networks: from consistency to controllabilities , 1999, J. Exp. Theor. Artif. Intell..

[101]  F. Gers,et al.  Long short-term memory in recurrent neural networks , 2001 .

[102]  Yoshua Bengio,et al.  On Using Very Large Target Vocabulary for Neural Machine Translation , 2014, ACL.

[103]  Brian C. Williams,et al.  Conflict-directed A* and its role in model-based embedded systems , 2007, Discret. Appl. Math..

[104]  Quoc V. Le,et al.  Addressing the Rare Word Problem in Neural Machine Translation , 2014, ACL.