On the type structure of standard ML
暂无分享,去创建一个
[1] Furio Honsell,et al. A framework for defining logics , 1993, JACM.
[2] Richard Statman,et al. Logical Relations and the Typed lambda-Calculus , 1985, Inf. Control..
[3] John C. Reynolds,et al. Towards a theory of type structure , 1974, Symposium on Programming.
[4] Douglas J. Howe. The Computational Behaviour of Girard's Paradox , 1987, LICS.
[5] Luca Cardelli,et al. A Semantics of Multiple Inheritance , 1984, Information and Computation.
[6] Kim B. Bruce,et al. The Semantics of Second Order Polymorphic Lambda Calculus , 1984, Semantics of Data Types.
[7] F. Dick. A survey of the project Automath , 1980 .
[8] Daniel Leivant,et al. Polymorphic type inference , 1983, POPL '83.
[9] Gordon D. Plotkin,et al. An ideal model for recursive polymorphic types , 1984, Inf. Control..
[10] R. Seely,et al. Locally cartesian closed categories and type theory , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.
[11] J. Y. Girard,et al. Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .
[12] Harry G. Mairson,et al. Unification and ML-Type Reconstruction , 1991, Computational Logic - Essays in Honor of Alan Robinson.
[13] John C. Mitchell,et al. Kripke-Style Models for Typed lambda Calculus , 1991, Ann. Pure Appl. Log..
[14] R. A. G. Seely,et al. Categorical semantics for higher order polymorphic lambda calculus , 1987, Journal of Symbolic Logic.
[15] David B. MacQueen. Modules for standard ML , 1984, LFP '84.
[16] Robert Cartwright,et al. Types as intervals , 1985, POPL.
[17] Alley Stoughton,et al. Fully abstract models of programming languages , 1986, Research Notes in Theoretical Computer Science.
[18] Robin Milner,et al. Definition of standard ML , 1990 .
[19] John C. Reynolds,et al. Polymorphism is not Set-Theoretic , 1984, Semantics of Data Types.
[20] Douglas J. Howe,et al. Impredicative Strong Existential Equivalent to Type:Type , 1986 .
[21] Albert R. Meyer,et al. "Type" is not a type , 1986, POPL '86.
[22] John C. Mitchell,et al. Polymorphic Type Inference and Containment , 1988, Inf. Comput..
[23] Eugenio Moggi,et al. Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.
[24] HarperRobert,et al. On the type structure of standard ML , 1993 .
[25] Nancy Jean Mccracken,et al. An investigation of a programming language with a polymorphic type structure. , 1979 .
[26] P. Martin-Löf. Constructive mathematics and computer programming , 1984 .
[27] E. Ford,et al. POLYMORPHISM , 1945, Encyclopedic Dictionary of Archaeology.
[28] Robin Milner,et al. A Type Discipline for Program Modules , 1987, TAPSOFT, Vol.2.
[29] Luca Cardelli,et al. Structural subtyping and the notion of power type , 1988, POPL '88.
[30] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[31] John C. Mitchell. A type-inference approach to reduction properties and semantics of polymorphic expressions (summary) , 1986, LFP '86.
[32] Richard Statman,et al. Empty types in polymorphic lambda calculus , 1987, POPL '87.
[33] Jerzy Tiuryn,et al. ML Typability is DEXTIME-Complete , 1990, CAAP.
[34] William A. Howard,et al. The formulae-as-types notion of construction , 1969 .
[35] Kim B. Bruce,et al. The Finitary Projection Model for Second Order Lambda Calculus and Solutions to Higher Order Domain Equations , 1986, LICS.
[36] John C. Mitchell,et al. Abstract types have existential type , 1988, TOPL.
[37] John C. Reynolds,et al. Types, Abstraction and Parametric Polymorphism , 1983, IFIP Congress.
[38] John C. Mitchell,et al. Abstract types have existential types , 1985, POPL.
[39] A. Troelstra. Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .
[40] Mitchell Wand,et al. A types-as-sets semantics for milner-style polymorphism , 1984, POPL.
[41] P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part , 1975 .
[42] Luca Cardelli,et al. On understanding types, data abstraction, and polymorphism , 1985, CSUR.
[43] Robin Milner,et al. Principal type-schemes for functional programs , 1982, POPL '82.
[44] Atsushi Ohori,et al. A simple semantics for ML polymorphism , 1989, FPCA.
[45] John C. Mitchell,et al. Type Systems for Programming Languages , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[46] John C. Mitchell,et al. Higher-order modules and the phase distinction , 1989, POPL '90.
[47] Thierry Coquand,et al. The Calculus of Constructions , 1988, Inf. Comput..
[48] F. Honsell,et al. A Framework for De ning LogicsRobert Harper , 1987 .
[49] Thierry Coquand,et al. An Analysis of Girard's Paradox , 1986, LICS.
[50] Thierry Coquand,et al. Inheritance as Implicit Coercion , 1991, Inf. Comput..
[51] G.D. Plotkin,et al. LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..
[52] Rance Cleaveland,et al. Implementing mathematics with the Nuprl proof development system , 1986 .
[53] John C. Mitchell,et al. Second-Order Logical Relations (Extended Abstract) , 1985, Logic of Programs.
[54] Robin Milner,et al. A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..
[55] M. Tofte. Operational Semantics and Polymorphic Type Inference , 1988 .
[56] Eugenio Moggi,et al. A category-theoretic account of program modules , 1989, Mathematical Structures in Computer Science.
[57] Robin Milner,et al. Commentary on standard ML , 1990 .
[58] J. Girard. Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .
[59] David B. MacQueen. Using dependent types to express modular structure , 1986, POPL '86.
[60] de Ng Dick Bruijn,et al. A survey of the project Automath , 1980 .
[61] Gordon D. Plotkin,et al. Call-by-Name, Call-by-Value and the lambda-Calculus , 1975, Theor. Comput. Sci..
[62] Per Martin-Löf,et al. Constructive mathematics and computer programming , 1984 .
[63] John C. Mitchell,et al. The Semantics of Second-Order Lambda Calculus , 1990, Inf. Comput..