Performance Evaluation of Sine-Cosine Optimization Versus Particle Swarm Optimization for Global Sequence Alignment Problem

Pairwise global sequence alignment is a vital process for finding functional and evolutionary similarity between biological sequences. The main usage of it is searching biological databases for finding the origin of unknown sequence. The standard global alignment based on dynamic programming approach which produces the accurate alignment but with extensive execution time. In this chapter, Sine-Cosine optimization algorithm was used for accelerating pairwise global alignment with alignment score near one produced by dynamic programming alignment. The reason for using Sine-Cosine optimization is its excellent exploration of the search space. The developed technique was tested on human and mouse protein sequences and was compared with classical global sequence alignment and alignment using Particle Swarm Optimization method.

[1]  R F Doolittle,et al.  Progressive alignment and phylogenetic tree construction of protein sequences. , 1990, Methods in enzymology.

[2]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[3]  Dervis Karaboga,et al.  Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems , 2007, IFSA.

[4]  S. Henikoff,et al.  Amino acid substitution matrices from protein blocks. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Dinesh Kumar,et al.  Data Clustering Using Sine Cosine Algorithm: Data Clustering Using SCA , 2017 .

[6]  Aboul Ella Hassanien,et al.  Moth-flame Optimization Based Segmentation for MRI Liver Images , 2017, AISI.

[7]  Torbjørn Rognes,et al.  Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation , 2011, BMC Bioinformatics.

[8]  Aboul Ella Hassanien,et al.  Multiple Sequence Alignment Optimization Using Meta-Heuristic Techniques , 2020, Data Analytics in Medicine.

[9]  Aboul Ella Hassanien,et al.  Parameter Optimization of Support Vector Machine Using Dragonfly Algorithm , 2017, AISI.

[10]  Sami Khuri,et al.  A Comparison of DNA Fragment Assembly Algorithms , 2004, METMBS.

[11]  Kashif Ishaque,et al.  An Improved Particle Swarm Optimization (PSO)–Based MPPT for PV With Reduced Steady-State Oscillation , 2012, IEEE Transactions on Power Electronics.

[12]  Nadia Nedjah,et al.  Soft computing in big data intelligent transportation systems , 2016, Appl. Soft Comput..

[13]  Partha Pratim Pande,et al.  Hardware accelerators for biocomputing: A survey , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[14]  Hossein Nezamabadi-pour,et al.  A gravitational search algorithm for multimodal optimization , 2014, Swarm Evol. Comput..

[15]  O. Gotoh An improved algorithm for matching biological sequences. , 1982, Journal of molecular biology.

[16]  M. Nabi,et al.  Re-entry trajectory optimization for space shuttle using Sine-Cosine Algorithm , 2017, 2017 8th International Conference on Recent Advances in Space Technologies (RAST).

[17]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[18]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[19]  Eneko Osaba,et al.  Applications of Soft Computing in Intelligent Transportation Systems , 2017, Soft Computing Based Optimization and Decision Models.

[20]  Aboul Ella Hassanien,et al.  Sine cosine optimization algorithm for feature selection , 2016, 2016 International Symposium on INnovations in Intelligent SysTems and Applications (INISTA).

[21]  Aboul Ella Hassanien,et al.  Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation , 2017, Expert Syst. Appl..

[22]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[23]  Jacques Cohen,et al.  Bioinformatics—an introduction for computer scientists , 2004, CSUR.

[24]  Aboul Ella Hassanien,et al.  Artificial Bee Colony Based Segmentation for CT Liver Images , 2016 .

[25]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[26]  Aboul Ella Hassanien,et al.  Antlion Optimization Based Segmentation for MRI Liver Images , 2016, ICGEC.

[27]  T. Ramdas,et al.  A Survey of FPGAs for Acceleration of High Performance Computing and their Application to Computational Molecular Biology , 2005, TENCON 2005 - 2005 IEEE Region 10 Conference.

[28]  Aboul Ella Hassanien,et al.  Hybrid Swarms Optimization Based Image Segmentation , 2016 .

[29]  J. Garnier,et al.  Improving protein secondary structure prediction with aligned homologous sequences , 1996, Protein science : a publication of the Protein Society.

[30]  D. Mount,et al.  Comparison of the PAM and BLOSUM Amino Acid Substitution Matrices. , 2008, CSH protocols.

[31]  Seyed Mohammad Mirjalili,et al.  Ions motion algorithm for solving optimization problems , 2015, Appl. Soft Comput..

[32]  Chih-Hong Lin,et al.  Multi-objective optimization design using amended particle swarm optimization and Taguchi method for a six-phase copper rotor induction motor , 2017 .

[33]  Mourad Elloumi,et al.  Accelerating Pairwise Alignment Algorithms by Using Graphics Processor Units , 2013 .

[34]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[35]  Ying Liu,et al.  A Highly Parameterized and Efficient FPGA-Based Skeleton for Pairwise Biological Sequence Alignment , 2009, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[36]  Seyed Mohammad Mirjalili,et al.  Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm , 2015, Knowl. Based Syst..

[37]  Frederic Heliodore,et al.  Design of Metaheuristic Based on Machine Learning: A Unified Approach , 2017, 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

[38]  Liang Gao,et al.  Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times , 2017, Appl. Math. Comput..

[39]  Aboul Ella Hassanien,et al.  Liver segmentation in MRI images based on whale optimization algorithm , 2017, Multimedia Tools and Applications.

[40]  Jui-Sheng Chou,et al.  Metaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problems , 2016 .

[41]  Jeng-Shyang Pan,et al.  Handwritten Arabic Manuscript Image Binarization Using Sine Cosine Optimization Algorithm , 2016, ICGEC.

[42]  Aboul Ella Hassanien,et al.  Digital Images Segmentation Using a Physical-Inspired Algorithm , 2017 .

[43]  Seyedali Mirjalili,et al.  SCA: A Sine Cosine Algorithm for solving optimization problems , 2016, Knowl. Based Syst..

[44]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[45]  Aboul Ella Hassanien,et al.  A Hybrid Grey Wolf Based Segmentation with Statistical Image for CT Liver Images , 2016, AISI.

[46]  Bo Xu,et al.  DSA: Scalable Distributed Sequence Alignment System Using SIMD Instructions , 2017, 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID).

[47]  Aboul Ella Hassanien,et al.  Bio-Inspired Optimization Algorithms for Arabic Handwritten Characters , 2017 .

[48]  Rainer Kolisch,et al.  A hybrid metaheuristic for resource-constrained project scheduling with flexible resource profiles , 2017, Eur. J. Oper. Res..

[49]  Aboul Ella Hassanien,et al.  A Survey of Metaheuristics Methods for Bioinformatics Applications , 2016, Applications of Intelligent Optimization in Biology and Medicine.

[50]  Oguz Emrah Turgut,et al.  Thermal and Economical Optimization of a Shell and Tube Evaporator Using Hybrid Backtracking Search—Sine–Cosine Algorithm , 2017 .

[51]  Patrick Siarry,et al.  A survey on optimization metaheuristics , 2013, Inf. Sci..