A model for robust resource allocation in project scheduling

Models for Robust Resource Allocation in Project Scheduling Roel Leus§ and Willy Herroelen The vast majority of resource-constrained project scheduling efforts assumes complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. In reality, however, project activities are subject to considerable uncertainty which generally leads to numerous schedule disruptions. In this paper, we present a resource allocation model that protects the makespan of a given baseline schedule against activity duration variability. A branch-and-bound algorithm is developed that solves the proposed robust resource allocation problem in exact and approximate formulations. The procedure relies on constraint propagation during its search. We report on computational results obtained on a set of benchmark problems.

[1]  Christian Artigues,et al.  Insertion techniques for static and dynamic resource-constrained project scheduling , 2003, Eur. J. Oper. Res..

[2]  Rema Padman,et al.  An integrated survey of deterministic project scheduling , 2001 .

[3]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[4]  Rolf H. Möhring,et al.  Scheduling under Uncertainty: Bounding the Makespan Distribution , 2001, Computational Discrete Mathematics.

[5]  Christian Artigues,et al.  A polynomial activity insertion algorithm in a multi-resource schedule with cumulative constraints and multiple modes , 2000, Eur. J. Oper. Res..

[6]  Erwin Pesch,et al.  Constraint propagation techniques for the disjunctive scheduling problem , 2000, Artif. Intell..

[7]  Willy Herroelen,et al.  On the merits and pitfalls of critical chain scheduling , 2000 .

[8]  Mario Vanhoucke,et al.  A new random network generator for activity-on-the-node networks , 2000 .

[9]  Christian Artigues,et al.  Insertion Techniques for On and Off-Line Resource Constrained Project Scheduling , 2000 .

[10]  Maciej Hapke,et al.  Scheduling under Fuzziness , 2000 .

[11]  J. U. M. Smith,et al.  Project Risk Management: Processes, Techniques and Insights , 1998, J. Oper. Res. Soc..

[12]  Erik Demeulemeester,et al.  Resource-constrained project scheduling: A survey of recent developments , 1998, Comput. Oper. Res..

[13]  U Dave,et al.  Critical Chain , 1998, J. Oper. Res. Soc..

[14]  Erik Demeulemeester,et al.  New Benchmark Results for the Resource-Constrained Project Scheduling Problem , 1997 .

[15]  F. Lootsma Fuzzy Logic for Planning and Decision Making , 1997 .

[16]  John Bowers,et al.  Criticality in Resource Constrained Networks , 1995 .

[17]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[18]  Wpm Wim Nuijten,et al.  Time and resource constrained scheduling : a constraint satisfaction approach , 1994 .

[19]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[20]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[21]  Erik Demeulemeester,et al.  A branch-and-bound procedure for the multiple resource-constrained project scheduling problem , 1992 .

[22]  Genaro J. Gutierrez,et al.  Parkinson's Law and Its Implications for Project Management , 1991 .

[23]  Jack R. Meredith,et al.  Project Management: A Managerial Approach , 1989 .

[24]  G. NAEGLER,et al.  Chapter 8 – RESOURCE ALLOCATION IN A NETWORK MODEL - THE LEINET SYSTEM , 1989 .

[25]  Roman Słowiński,et al.  Advances in project scheduling , 1989 .

[26]  Jane N. Hagstrom,et al.  Computational complexity of PERT problems , 1988, Networks.

[27]  Ernest Davis,et al.  Constraint Propagation with Interval Labels , 1987, Artif. Intell..

[28]  Franz Josef Radermacher,et al.  Preselective strategies for the optimization of stochastic project networks under resource constraints , 1983, Networks.

[29]  Salah E. Elmaghraby,et al.  Activity networks: Project planning and control by network models , 1977 .

[30]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[31]  Edward G. Coffman,et al.  Scheduling independent tasks to reduce mean finishing time , 1974, CACM.

[32]  J. Rosenhead,et al.  Robustness and Optimality as Criteria for Strategic Decisions , 1972 .

[33]  J. D. Wiest,et al.  Management Guide to PERT/CPM , 1969 .

[34]  Mark M. Klein,et al.  Scheduling project networks , 1967, CACM.

[35]  Jerome D. Wiest Some Properties of Schedules for Large Projects with Limited Resources , 1964 .