Lithium-ion conducting electrolyte salts for lithium batteries.

This paper presents an overview of the various types of lithium salts used to conduct Li(+) ions in electrolyte solutions for lithium rechargeable batteries. More emphasis is paid towards lithium salts and their ionic conductivity in conventional solutions, solid-electrolyte interface (SEI) formation towards carbonaceous anodes and the effect of anions on the aluminium current collector. The physicochemical and functional parameters relevant to electrochemical properties, that is, electrochemical stabilities, are also presented. The new types of lithium salts, such as the bis(oxalato)borate (LiBOB), oxalyldifluoroborate (LiODFB) and fluoroalkylphosphate (LiFAP), are described in detail with their appropriate synthesis procedures, possible decomposition mechanism for SEI formation and prospect of using them in future generation lithium-ion batteries. Finally, the state-of-the-art of the system is given and some interesting strategies for the future developments are illustrated.

[1]  Zhibin Zhou,et al.  Lithium (fluorosulfonyl)(nonafluorobutanesulfonyl)imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells , 2011 .

[2]  Zhian Zhang,et al.  LiPF6 and lithium oxalyldifluoroborate blend salts electrolyte for LiFePO4/artificial graphite lithium-ion cells , 2010 .

[3]  Z. Florjańczyk,et al.  Mixture of LiBF4 and lithium difluoro(oxalato)borate for application as a new electrolyte for lithium-ion batteries , 2010 .

[4]  Zhian Zhang,et al.  Lithium oxalyldifluoroborate/carbonate electrolytes for LiFePO4/artificial graphite lithium-ion cells , 2010 .

[5]  Jeffrey W. Fergus,et al.  Ceramic and polymeric solid electrolytes for lithium-ion batteries , 2010 .

[6]  J-M Tarascon,et al.  Key challenges in future Li-battery research , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[8]  Jeffrey W. Fergus,et al.  Recent developments in cathode materials for lithium ion batteries , 2010 .

[9]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[10]  Xuejie Huang,et al.  Research on Advanced Materials for Li‐ion Batteries , 2009 .

[11]  V. Aravindan,et al.  Synthesis and characterization of LiBOB‐based PVdF/PVC‐TiO2 composite polymer electrolytes , 2009 .

[12]  V. Aravindan,et al.  Li+ ion conduction in TiO2 filled polyvinylidenefluoride-co-hexafluoropropylene based novel nanocomposite polymer electrolyte membranes with LiDFOB , 2009 .

[13]  Khalil Amine,et al.  Redox shuttles for safer lithium-ion batteries , 2009 .

[14]  V. Aravindan,et al.  LiFAP-based PVdF–HFP microporous membranes by phase-inversion technique with Li/LiFePO4 cell , 2009 .

[15]  V. Aravindan,et al.  Lithium fluoroalkylphosphate based novel composite polymer electrolytes (NCPE) incorporated with nanosized SiO2 filler , 2009 .

[16]  M. Whittingham Inorganic nanomaterials for batteries. , 2008, Dalton transactions.

[17]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[18]  V. Aravindan,et al.  Lithium difluoro(oxalate)borate‐based novel nanocomposite polymer electrolytes for lithium ion batteries , 2008 .

[19]  V. Aravindan,et al.  Polyvinylidene fluoride–hexafluoropropylene (PVdF–HFP)-based composite polymer electrolyte containing LiPF3(CF3CF2)3 , 2008 .

[20]  Shengbo Zhang LiBF3Cl as an alternative salt for the electrolyte of Li-ion batteries , 2008 .

[21]  V. Aravindan,et al.  Characterization of SiO2 and Al2O3 Incorporated PVdF-HFP Based Composite Polymer Electrolytes with LiPF3(CF3CF2)3 , 2008 .

[22]  Bruno Scrosati,et al.  Nanomaterialien für wiederaufladbare Lithiumbatterien , 2008 .

[23]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[24]  M. Armand,et al.  Building better batteries , 2008, Nature.

[25]  V. Aravindan,et al.  Polyvinylidenefluoride–hexafluoropropylene based nanocomposite polymer electrolytes (NCPE) complexed with LiPF3(CF3CF2)3 , 2007 .

[26]  V. Aravindan,et al.  ZrO2 nanofiller incorporated PVC/PVdF blend-based composite polymer electrolytes (CPE) complexed with LiBOB , 2007 .

[27]  V. Aravindan,et al.  Effects of TiO2 and ZrO2 nanofillers in LiBOB based PVdF/PVC composite polymer electrolytes (CPE) , 2007 .

[28]  V. Aravindan,et al.  A novel gel electrolyte with lithium difluoro(oxalato)borate salt and Sb2O3 nanoparticles for lithium ion batteries , 2007 .

[29]  Bruno Scrosati,et al.  Recent advances in liquid and polymer lithium-ion batteries , 2007 .

[30]  V. Aravindan,et al.  A study on LiBOB-based nanocomposite gel polymer electrolytes (NCGPE) for Lithium-ion batteries , 2007 .

[31]  Shengbo Zhang A review on electrolyte additives for lithium-ion batteries , 2006 .

[32]  S. Nutt,et al.  Compounds in solid electrolyte interface (SEI) on carbonaceous material charged in siloxane-based electrolyte , 2006 .

[33]  Shengbo Zhang,et al.  An unique lithium salt for the improved electrolyte of Li-ion battery , 2006 .

[34]  S. Nutt,et al.  Analysis of the passive surface film on a graphite electrode charged in polysiloxane-based electrolyte , 2006 .

[35]  S. Nutt,et al.  Effect of an additive to polysiloxane-based electrolyte on passive film formation on a graphite electrode , 2006 .

[36]  T. Jow,et al.  Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB , 2006 .

[37]  T. P. Kumar,et al.  Safety mechanisms in lithium-ion batteries , 2006 .

[38]  Zonghai Chen,et al.  LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries , 2006 .

[39]  T. Jow,et al.  LiBOB-based gel electrolyte Li-ion battery for high temperature operation , 2006 .

[40]  Andrew J. Gmitter,et al.  The design of alternative nonaqueous high power chemistries , 2006 .

[41]  T. Devine,et al.  Corrosion and Passivation of Aluminum in LiBOB/EC+DMC Electrolyte , 2006 .

[42]  M. Ue,et al.  Electrochemical properties of Li[CnF2n+1BF3] as electrolyte salts for lithium-ion cells , 2006 .

[43]  Doron Aurbach,et al.  Calorimetric studies of the thermal stability of electrolyte solutions based on alkyl carbonates and the effect of the contact with lithium , 2005 .

[44]  Kang Xu,et al.  LiBOB: Is it an alternative salt for lithium ion chemistry? , 2005 .

[45]  M. Ue,et al.  Li [ C 2 F 5 BF 3 ] as an Electrolyte Salt for 4 V Class Lithium-Ion Cells , 2005 .

[46]  V. S. Pervov,et al.  Oxide materials as positive electrodes of lithium-ion batteries , 2004 .

[47]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[48]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[49]  Bruno Scrosati,et al.  PEO-Based Electrolyte Membranes Based on LiBC4 O 8 Salt , 2004 .

[50]  T. Jow,et al.  Graphite/electrolyte interface formed in LiBoB-based electrolytes. I. Differentiating the roles of EC and LiBOB in SEI formation , 2004 .

[51]  Michel Perrier,et al.  Safe Li-ion polymer batteries for HEV applications , 2004 .

[52]  Junwei Jiang,et al.  ARC studies of the reaction between Li0FePO4 and LiPF6 or LiBOB EC/DEC electrolytes , 2004 .

[53]  E. Peled,et al.  XPS analysis of the SEI formed on carbonaceous materials , 2004 .

[54]  Junwei Jiang,et al.  Thermal stability of 18650 size Li-ion cells containing LiBOB electrolyte salt , 2004 .

[55]  D. Aurbach,et al.  On the use of LiPF3(CF2CF3)3 (LiFAP) solutions for Li-ion batteries. Electrochemical and thermal studies , 2003 .

[56]  Wu Xu,et al.  Solvent-Free Electrolytes with Aqueous Solution-Like Conductivities , 2003, Science.

[57]  M. Ue,et al.  Novel electrolyte salts based on perfluoroalkyltrifluoroborate anions: 1. Synthesis and characterization , 2003 .

[58]  Jeff Dahn,et al.  Comparison of the Thermal Stability of Lithiated Graphite in LiBOB EC/DEC and in LiPF6 EC/DEC , 2003 .

[59]  Kang Xu,et al.  Chemical Analysis of Graphite/Electrolyte Interface Formed in LiBOB-Based Electrolytes , 2003 .

[60]  F. Alloin,et al.  Lithium organic salts with extra functionalities , 2003 .

[61]  D. Aurbach,et al.  A comparison among LiPF6, LiPF3(CF2CF3)3 (LiFAP), and LiN(SO2CF2CF3)2 (LiBETI) solutions: electrochemical and thermal studies , 2003 .

[62]  Jung-Ki Park,et al.  Interfacial enhancement between lithium electrode and polymer electrolytes , 2003 .

[63]  Doron Aurbach,et al.  LiPF3 ( CF 2 CF 3 ) 3 : A Salt for Rechargeable Lithium Ion Batteries , 2003 .

[64]  J. Arai Nonflammable Methyl Nonafluorobutyl Ether for Electrolyte Used in Lithium Secondary Batteries , 2003 .

[65]  M. Ue,et al.  Anodic Stability of Several Anions Examined by Ab Initio Molecular Orbital and Density Functional Theories , 2002 .

[66]  Kang Xu,et al.  Lithium Bis(oxalato)borate Stabilizes Graphite Anode in Propylene Carbonate , 2002 .

[67]  Richard T. Haasch,et al.  Surface Characterization of Electrodes from High Power Lithium-Ion Batteries , 2002 .

[68]  Seung M. Oh,et al.  Spectroscopic and electrochemical studies of PMMA-based gel polymer electrolytes modified with interpenetrating networks , 2002 .

[69]  Andrea G. Bishop,et al.  The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes , 2002 .

[70]  Kang Xu,et al.  Study of LiBF4 as an electrolyte salt for a Li-ion battery , 2002 .

[71]  Wu Xu,et al.  Preparation and characterization of novel ''polyMOB'' polyanionic solid electrolytes with weak coulomb traps , 2002 .

[72]  T. P. Chen,et al.  Suppression of nitridation-induced interface traps and hole mobility degradation by nitrogen plasma nitridation , 2002 .

[73]  J. Yamaki,et al.  Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells , 2002 .

[74]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[75]  P. Balbuena,et al.  Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: reduction mechanisms of ethylene carbonate. , 2001, Journal of the American Chemical Society.

[76]  T. Nakajima,et al.  Effect of addition of fluoroethers to organic solvents for lithium ion secondary batteries , 2001 .

[77]  W. Henderson,et al.  PEO-LiN ( SO 2 CF 2 CF 3 ) 2 Polymer Electrolytes: I. XRD, DSC, and Ionic Conductivity Characterization , 2001 .

[78]  A. Kawakami,et al.  Electronic structures and electrochemical properties of LiPF6−n(CF3)n , 2001 .

[79]  Diana Golodnitsky,et al.  Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies , 2001 .

[80]  Michael Schmidt,et al.  Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries , 2001 .

[81]  J. Kerr,et al.  Chemical reactivity of PF{sub 5} and LiPF{sub 6} in ethylene carbonate/dimethyl carbonate solutions , 2001 .

[82]  J. Yang,et al.  Interface properties between a lithium metal electrode and a poly(ethylene oxide) based composite polymer electrolyte , 2001 .

[83]  Yongyao Xia,et al.  A 4 V Lithium-Ion Battery Based on a 5 V LiNi x Mn2 − x O 4 Cathode and a Flake Cu-Sn Microcomposite Anode , 2001 .

[84]  James W. Evans,et al.  Aluminum Corrosion in Lithium Batteries An Investigation Using the Electrochemical Quartz Crystal Microbalance , 2000 .

[85]  A. Kawakami,et al.  Characteristics of the electrolyte with fluoro organic lithium salts , 2000 .

[86]  C. Capiglia,et al.  Structure and transport properties of polymer gel electrolytes based on PVdf-HFP and LiN(C2F5SO2)2 , 2000 .

[87]  N. Ignat’ev,et al.  Electrochemical fluorination of organo-element compounds , 2000 .

[88]  Michel L. Trudeau Advanced Materials for Energy Storage , 1999 .

[89]  Tao Zheng,et al.  The elevated temperature performance of the LiMn2O4/C system: Failure and solutions , 1999 .

[90]  L. Péter,et al.  Anodic dissolution of aluminium in organic electrolytes containing perfluoroalkylsulfonyl imides , 1999 .

[91]  D. Aurbach,et al.  New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries , 1999 .

[92]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[93]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[94]  W. Behl,et al.  Stability of aluminum substrates in lithium-ion battery electrolytes , 1998 .

[95]  C. Wan,et al.  Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte , 1998 .

[96]  A. Kawakami,et al.  On the characteristics of electrolytes with new lithium imide salts , 1997 .

[97]  L. Krause,et al.  Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells , 1997 .

[98]  D. Aurbach,et al.  Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems , 1997 .

[99]  M. Ue,et al.  Electrochemical Properties of Quaternary Ammonium Salts for Electrochemical Capacitors , 1997 .

[100]  Seung M. Oh,et al.  Fluorescence spectroscopy for local viscosity measurements in polyacrylonitrile (pan)-based polymer gel electrolytes , 1996 .

[101]  M. Salomon,et al.  Conductivity and Electrochemical Stability of Electrolytes Containing Organic Solvent Mixtures with Lithium tris(Trifluoromethanesulfonyl)methide , 1996 .

[102]  D. Aurbach,et al.  LiC(SO2CF3)3, a new salt for Li battery systems. A comparative study of Li and non-active metal electrodes in its ethereal solutions using in situ FTIR spectroscopy , 1996 .

[103]  D. Aurbach,et al.  The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries II . Graphite Electrodes , 1995 .

[104]  D. Aurbach,et al.  The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries I . Li Metal Anodes , 1995 .

[105]  M. Ue,et al.  Mobility and Ionic Association of Lithium Salts in a Propylene Carbonate‐Ethyl Methyl Carbonate Mixed Solvent , 1995 .

[106]  M. Ue Mobility and Ionic Association of Lithium and Quaternary Ammonium Salts in Propylene Carbonate and γ‐Butyrolactone , 1994 .

[107]  J. Tarascon,et al.  New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells , 1994 .

[108]  R. Frech,et al.  Anion-solvent and anion-cation interactions in lithium and tetrabutylammonium trifluoromethanesulfonate solutions , 1994 .

[109]  D. Aurbach,et al.  The Correlation Between the Surface Chemistry and the Performance of Li‐Carbon Intercalation Anodes for Rechargeable ‘Rocking‐Chair’ Type Batteries , 1994 .

[110]  O. Bohnké,et al.  Fast ion transport in new lithium electrolytes gelled with PMMA. 2. Influence of lithium salt concentration , 1993 .

[111]  D. Aurbach,et al.  Impedance spectroscopy of lithium electrodes: Part 1. General behavior in propylene carbonate solutions and the correlation to surface chemistry and cycling efficiency , 1993 .

[112]  A. Webber Conductivity and Viscosity of Solutions of LiCF3 SO 3, Li ( CF 3 SO 2 ) 2 N , and Their Mixtures , 1991 .

[113]  D. Wilkinson,et al.  Conductivity of electrolytes for rechargeable lithium batteries , 1991 .

[114]  William J. Storck,et al.  KUWAIT INVASION: Iraqi action may spur chemical slump , 1990 .

[115]  H. F. Bittner,et al.  Primary and Secondary Lithium Passivation Characteristics and Effects in the Li / SO 2 Couple , 1989 .

[116]  Edward J. Plichta,et al.  An Improved Li / Li x CoO2 Rechargeable Cell , 1989 .

[117]  V. Koch,et al.  Electrochemical Stability of LiMF6 ( M = P , As , Sb ) in Tetrahydrofuran and Sulfolane , 1988 .

[118]  J. Yamaki,et al.  Lithium Electrode Morphology during Cycling in Lithium Cells , 1988 .

[119]  J. Besenhard,et al.  Corrosion protection of secondary lithium electrodes in organic electrolytes , 1987 .

[120]  J. Foropoulos,et al.  Synthesis, properties, and reactions of bis((trifluoromethyl)sulfonyl) imide, (CF3SO2)2NH , 1984 .

[121]  J. Foos,et al.  Lithium Cycling in Polymethoxymethane Solvents , 1983 .

[122]  K. Abraham,et al.  Characterization of ether electrolytes for rechargeable lithium cells. Technical report , 1982 .

[123]  V. Koch,et al.  Specular lithium deposits from lithium hexafluoroarsenate/diethyl ether electrolytes. Technical report , 1981 .

[124]  G. H. Newman,et al.  Hazard Investigations of LiClO4 / Dioxolane Electrolyte , 1980 .

[125]  V. Koch Reactions of Tetrahydrofuran and Lithium Hexafluoroarsenate with Lithium , 1979 .

[126]  R. Jasinski,et al.  Thermal Stability of a Propylene Carbonate Electrolyte , 1970 .

[127]  T. P. Kumar,et al.  Materials for next-generation lithium batteries , 2008 .

[128]  Fushen Li,et al.  The Electrochemical Characterization of Lithium Bis(oxalato)borate Synthesized by a Novel Method , 2006 .

[129]  V. Kolosnitsyn,et al.  Lithium-Conducting Polymer Electrolytes for Chemical Power Sources , 2005 .

[130]  Bruno Scrosati,et al.  Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells. , 2005, Chemical record.

[131]  Junwei Jiang,et al.  ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes , 2004 .

[132]  Wu Xu,et al.  Structures of orthoborate anions and physical properties of their lithium salt nonaqueous solutions , 2003 .

[133]  D. D. MacNeil,et al.  Can an Electrolyte for Lithium-Ion Batteries Be Too Stable? , 2003 .

[134]  Andrea G. Bishop,et al.  Surface analysis of LiMn2O4 electrodes in carbonate based electrolytes , 2002 .

[135]  Kang Xu,et al.  LiBOB as Salt for Lithium-Ion Batteries:A Possible Solution for High Temperature Operation , 2002 .

[136]  Hiroyuki Hasebe,et al.  Laminated Thin Li-Ion Batteries Using a Liquid Electrolyte , 2002 .

[137]  S. Wang,et al.  炭酸エチレン/炭酸ジメチル溶液中でのPF 5 及びLiPF 6 の化学反応性 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2001 .

[138]  Y. Nishi The development of lithium ion secondary batteries. , 2001 .

[139]  Barbara Laïk,et al.  Analysis of the surface layer on a petroleum coke electrode in tetraglyme solutions of lithium salts , 2001 .

[140]  Wu Xu,et al.  Weakly Coordinating Anions, and the Exceptional Conductivity of Their Nonaqueous Solutions , 2001 .

[141]  Wu Xu,et al.  A Fusible Orthoborate Lithium Salt with High Conductivity in Solutions , 1999 .

[142]  R. Frech,et al.  Molecular structures and normal vibrations of trifluoromethane sulfonate (CF3SO3-) and its lithium ion pairs and aggregates , 1994 .

[143]  C. Angell,et al.  Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity , 1993, Nature.

[144]  V. Koch,et al.  Thermally stable lithium salts for polymer electrolytes , 1992 .

[145]  D. Armstrong,et al.  An ab initio molecular orbital study of some coordination compounds of boron trifluoride , 1974 .