Simulation of n-qubit quantum systems. III. Quantum operations

During the last decade, several quantum information protocols, such as quantum key distribution, teleportation or quantum computation, have attracted a lot of interest. Despite the recent success and research efforts in quantum information processing, however, we are just at the beginning of understanding the role of entanglement and the behavior of quantum systems in noisy environments, i.e. for nonideal implementations. Therefore, in order to facilitate the investigation of entanglement and decoherence in n-qubit quantum registers, here we present a revised version of the FEYNMAN program for working with quantum operations and their associated (Jamiookowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. Apart from the implementation of different noise models, the current program extension may help investigate the fragility of many quantum states, one of the main obstacles in realizing quantum information protocols today.

[1]  T. Radtke,et al.  Control of entanglement following the photoionization of trapped, hydrogen-like ions , 2005 .

[2]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[3]  Stephan Fritzsche,et al.  Simulation of n-qubit quantum systems. II. Separability and entanglement , 2006, Comput. Phys. Commun..

[4]  Stephan Fritzsche,et al.  Angular correlations in the two-photon decay of hydrogenlike ions: Relativistic Green’s-function approach , 2005 .

[5]  Marcos Saraceno,et al.  Phase space contraction and quantum operations , 2005 .

[6]  W. Dur,et al.  Standard forms of noisy quantum operations via depolarization , 2005 .

[7]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[8]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[9]  Stephan Fritzsche,et al.  Simulation of n-qubit quantum systems. I. Quantum registers and quantum gates , 2005, Comput. Phys. Commun..

[10]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[11]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[12]  Ling-An Wu,et al.  A matrix realignment method for recognizing entanglement , 2003, Quantum Inf. Comput..

[13]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[14]  Karol Zyczkowski,et al.  On Duality between Quantum Maps and Quantum States , 2004, Open Syst. Inf. Dyn..

[15]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[16]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[17]  F. Martini,et al.  Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels , 1997, quant-ph/9710013.

[18]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[19]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[20]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[21]  N. Gershenfeld,et al.  Experimental Implementation of Fast Quantum Searching , 1998 .

[22]  Schumacher,et al.  Quantum data processing and error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[23]  David Poulin,et al.  Unified and generalized approach to quantum error correction. , 2004, Physical review letters.

[24]  T. Radtke,et al.  Density-matrix formalism for the photoion-electron entanglement in atomic photoionization , 2006 .

[25]  Mario Ziman,et al.  Concurrence versus purity: Influence of local channels on Bell states of two qubits , 2005 .

[26]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[27]  Stephan Fritzsche,et al.  Ratip – a toolbox for studying the properties of open-shell atoms and ions , 2001 .

[28]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[29]  M. Nielsen,et al.  Information transmission through a noisy quantum channel , 1997, quant-ph/9702049.

[30]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[31]  Timothy F. Havel Robust procedures for converting among Lindblad, Kraus and matrix representations of quantum dynamical semigroups , 2002, quant-ph/0201127.

[32]  H. Nakazato,et al.  Solution of the Lindblad equation in the Kraus representation , 2006 .

[33]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[34]  L M Vandersypen,et al.  Experimental realization of an order-finding algorithm with an NMR quantum computer. , 2000, Physical review letters.

[35]  M. Nielsen A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.

[36]  John Preskill,et al.  Lecture notes on quantum information and quantum computation~ http://www , 1998 .

[37]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[38]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[39]  F. Brandão,et al.  Are all maximally entangled states pure , 2005, quant-ph/0505121.

[40]  P. Arrighi,et al.  On quantum operations as quantum states , 2003, quant-ph/0307024.

[41]  L. C. Kwek,et al.  Operator-sum representation of time-dependent density operators and its applications , 2004 .

[42]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[43]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..