The BUFFALO HST Survey

The Beyond Ultra-deep Frontier Fields and Legacy Observations (BUFFALO) is a 101 orbit + 101 parallel Cycle 25 Hubble Space Telescope (HST) Treasury program taking data from 2018 to 2020. BUFFALO will expand existing coverage of the Hubble Frontier Fields (HFF) in Wide Field Camera 3/IR F105W, F125W, and F160W and Advanced Camera for Surveys/WFC F606W and F814W around each of the six HFF clusters and flanking fields. This additional area has not been observed by HST but is already covered by deep multiwavelength data sets, including Spitzer and Chandra. As with the original HFF program, BUFFALO is designed to take advantage of gravitational lensing from massive clusters to simultaneously find high-redshift galaxies that would otherwise lie below HST detection limits and model foreground clusters to study the properties of dark matter and galaxy assembly. The expanded area will provide the first opportunity to study both cosmic variance at high redshift and galaxy assembly in the outskirts of the large HFF clusters. Five additional orbits are reserved for transient follow-up. BUFFALO data including mosaics, value-added catalogs, and cluster mass distribution models will be released via MAST on a regular basis as the observations and analysis are completed for the six individual clusters.

[1]  E. Medezinski,et al.  Free-form Grale reconstruction of Abell 2744: robustness of uncertainties against changes in lensing data , 2019, Monthly Notices of the Royal Astronomical Society.

[2]  R. Bouwens,et al.  The Super Eight Galaxies: Properties of a Sample of Very Bright Galaxies at 7 < z < 8 , 2019, The Astrophysical Journal.

[3]  M. Donahue,et al.  On the Origin of the Scatter in the Red Sequence: An Analysis of Four CLASH Clusters , 2019, The Astrophysical Journal.

[4]  M. Nonino,et al.  RELICS: Reionization Lensing Cluster Survey , 2019, The Astrophysical Journal.

[5]  J. Kneib,et al.  Probing 3D Structure with a Large MUSE Mosaic: Extending the Mass Model of Frontier Field Abell 370 , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  B. Frye,et al.  Highly Magnified Stars in Lensing Clusters: New Evidence in a Galaxy Lensed by MACS J0416.1-2403 , 2019, The Astrophysical Journal.

[7]  Nick Kaiser,et al.  Searching for Highly Magnified Stars at Cosmological Distances: Discovery of a Redshift 0.94 Blue Supergiant in Archival Images of the Galaxy Cluster MACS J0416.1-2403 , 2019, The Astrophysical Journal.

[8]  A. Biviano,et al.  Quantifying the suppression of the (un)-obscured star formation in galaxy cluster cores at 0.2≲ z ≲0.9 , 2018, Monthly Notices of the Royal Astronomical Society.

[9]  C. Giocoli,et al.  Dark matter stripping in galaxy clusters: a look at the stellar-to-halo mass relation in the Illustris simulation , 2018, Monthly Notices of the Royal Astronomical Society.

[10]  R. Massey,et al.  Observable tests of self-interacting dark matter in galaxy clusters: cosmological simulations with SIDM and baryons , 2018, Monthly Notices of the Royal Astronomical Society.

[11]  Andrew P. Hearin,et al.  UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z = 0−10 , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  C. Conselice,et al.  PLCK G165.7+67.0: Analysis of a Massive Lensing Cluster in a Hubble Space Telescope Census of Submillimeter Giant Arcs Selected Using Planck/Herschel , 2018, The Astrophysical Journal.

[13]  M. Neyrinck,et al.  Galaxy Quenching from Cosmic Web Detachment , 2016, The Open Journal of Astrophysics.

[14]  M. Radovich,et al.  GASP XIII. Star formation in gas outside galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[15]  Shannon G. Patel,et al.  Wide-field Optical Spectroscopy of Abell 133: A Search for Filaments Reported in X-Ray Observations , 2018, The Astrophysical Journal.

[16]  D. Coe,et al.  The Bright-end Galaxy Candidates at z ∼ 9 from 79 Independent HST Fields , 2018, The Astrophysical Journal.

[17]  A. Robotham,et al.  Shark: introducing an open source, free, and flexible semi-analytic model of galaxy formation , 2018, Monthly Notices of the Royal Astronomical Society.

[18]  I. Trujillo,et al.  Intracluster light: a luminous tracer for dark matter in clusters of galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[19]  M. Lombardi,et al.  Dissection of the Collisional and Collisionless Mass Components in a Mini Sample of CLASH and HFF Massive Galaxy Clusters at z ≈ 0.4 , 2018, The Astrophysical Journal.

[20]  C. Pichon,et al.  Introducing a new, robust galaxy-finder algorithm for simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[21]  L. Williams,et al.  The role of multiple images and model priors in measuringH0 from supernova Refsdal in galaxy cluster MACS J1149.5+2223 , 2018, Monthly Notices of the Royal Astronomical Society.

[22]  M. Verdugo,et al.  Color gradients reflect an inside-out growth in early-type galaxies of the cluster MACS J1206.2-0847 , 2018, Astronomy & Astrophysics.

[23]  M. Nonino,et al.  Galaxy pre-processing in substructures around z ∼ 0.4 galaxy clusters , 2018, Monthly Notices of the Royal Astronomical Society.

[24]  T. Schrabback,et al.  Mass Modeling of Frontier Fields Cluster MACS J1149.5+2223 Using Strong and Weak Lensing , 2018, 1806.00698.

[25]  T. Schrabback,et al.  Mass and Light of Abell 370: A Strong and Weak Lensing Analysis , 2018, The Astrophysical Journal.

[26]  J. Primack,et al.  Dark matter halo properties versus local density and cosmic web location , 2018, Monthly notices of the Royal Astronomical Society.

[27]  M. Huertas-Company,et al.  On the Transition of the Galaxy Quenching Mode at 0.5 < z < 1 in CANDELS , 2018, The Astrophysical Journal.

[28]  M. Meneghetti,et al.  The Projected Dark and Baryonic Ellipsoidal Structure of 20 CLASH Galaxy Clusters , 2018, The Astrophysical Journal.

[29]  M. Meneghetti,et al.  CLUMP-3D: Testing ΛCDM with Galaxy Cluster Shapes , 2018, The Astrophysical Journal.

[30]  M. Meneghetti,et al.  CLUMP-3D: Three-dimensional Shape and Structure of 20 CLASH Galaxy Clusters from Combined Weak and Strong Lensing , 2018, The Astrophysical Journal.

[31]  M. Lombardi,et al.  Measuring the Value of the Hubble Constant “à la Refsdal” , 2018, The Astrophysical Journal.

[32]  Cambridge,et al.  Spitzer Matching Survey of the UltraVISTA Ultra-deep Stripes (SMUVS): Full-mission IRAC Mosaics and Catalogs , 2018, The Astrophysical Journal Supplement Series.

[33]  L. Williams,et al.  Evidence for the line-of-sight structure in the Hubble Frontier Field cluster, MACSJ0717.5+3745 , 2017, Monthly Notices of the Royal Astronomical Society.

[34]  R. Massey,et al.  Growing a ‘cosmic beast’: observations and simulations of MACS J0717.5+3745 , 2017, Monthly Notices of the Royal Astronomical Society.

[35]  M. Donahue,et al.  Lost but not forgotten: Intracluster light in galaxy groups and clusters , 2017, 1710.11313.

[36]  Johan Hidding,et al.  The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations , 2017, Royal Society Open Science.

[37]  Iac,et al.  Intracluster light at the Frontier - II. The Frontier Fields Clusters , 2017, 1710.03240.

[38]  Kyle L. Luther,et al.  The Discovery of a Gravitationally Lensed Supernova Ia at Redshift 2.22 , 2017, The Astrophysical Journal.

[39]  O. Ilbert,et al.  COSMOS2015 photometric redshifts probe the impact of filaments on galaxy properties , 2017, 1702.08810.

[40]  R. Bouwens,et al.  Strong-lensing analysis of A2744 with MUSE and Hubble Frontier Fields images , 2017, 1702.06962.

[41]  M. Oguri,et al.  Full-data Results of Hubble Frontier Fields: UV Luminosity Functions at z ∼ 6–10 and a Consistent Picture of Cosmic Reionization , 2017, 1702.04867.

[42]  D. Wittman,et al.  The Mismeasure of Mergers: Revised Limits on Self-interacting Dark Matter in Merging Galaxy Clusters , 2017, The Astrophysical Journal.

[43]  M. Oguri,et al.  Size–Luminosity Relations and UV Luminosity Functions at z = 6–9 Simultaneously Derived from the Complete Hubble Frontier Fields Data , 2017, 1710.07301.

[44]  M. Postman,et al.  Crowded Field Galaxy Photometry: Precision Colors in the CLASH Clusters , 2017, 1709.01925.

[45]  R. Kraft,et al.  X-Ray Morphological Analysis of the Planck ESZ Clusters , 2017, 1708.02590.

[46]  B. Weiner,et al.  Two peculiar fast transients in a strongly lensed host galaxy , 2017, 1707.02434.

[47]  J. Kneib,et al.  Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens , 2017, 1706.10279.

[48]  F. Durret,et al.  The faint end of the red sequence galaxy luminosity function: unveiling surface brightness selection effects with the CLASH clusters , 2017, 1704.08871.

[49]  C. Giocoli,et al.  Hubble Frontier Fields : systematic errors in strong lensing models of galaxy clusters – implications for cosmography. , 2017, 1704.05380.

[50]  S. White,et al.  The Cluster-EAGLE project: global properties of simulated clusters with resolved galaxies , 2017, 1703.10907.

[51]  S. White,et al.  The Hydrangea simulations: galaxy formation in and around massive clusters , 2017, 1703.10610.

[52]  O. Fèvre,et al.  The COSMOS2015 galaxy stellar mass function . Thirteen billion years of stellar mass assembly in ten snapshots , 2017, 1701.02734.

[53]  B. Garilli,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS): galaxy segregation inside filaments at z ≃ 0.7 , 2016, 1611.07045.

[54]  M. Meneghetti,et al.  The Frontier Fields lens modelling comparison project , 2016, 1606.04548.

[55]  J. Anderson,et al.  The Frontier Fields: Survey Design and Initial Results , 2016, 1605.06567.

[56]  Heidelberg,et al.  Abell 2744 : too much substructure for ΛCDM? , 2016, 1611.02790.

[57]  T. Treu,et al.  Characterizing Intracluster Light in the Hubble Frontier Fields , 2016, 1610.08503.

[58]  T. Treu,et al.  THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). VII. THE DIVERSITY OF THE DISTRIBUTION OF STAR FORMATION IN CLUSTER AND FIELD GALAXIES AT 0.3 ≤ z ≤ 0.7 , 2016, 1610.04621.

[59]  G. Bernstein,et al.  A free-form lensing model of A370 revealing stellar mass dominated BCGs, in Hubble Frontier Fields images , 2016, 1609.04822.

[60]  K. Sharon,et al.  THE SYSTEMATICS OF STRONG LENS MODELING QUANTIFIED: THE EFFECTS OF CONSTRAINT SELECTION AND REDSHIFT INFORMATION ON MAGNIFICATION, MASS, AND MULTIPLE IMAGE PREDICTABILITY , 2016, 1608.08713.

[61]  G. Bruzual,et al.  Modelling the nebular emission from primeval to present-day star-forming galaxies , 2016, 1607.06086.

[62]  R. Massey,et al.  The extraordinary amount of substructure in the Hubble Frontier Fields cluster Abell 2744 , 2016, 1606.04527.

[63]  D. Coe,et al.  Lens models under the microscope: Comparison of Hubble Frontier Field cluster magnification maps , 2016, 1605.07621.

[64]  B. Hilbert,et al.  The Frontier Fields: Survey Design , 2016 .

[65]  J. Merten,et al.  A COMPARISON AND JOINT ANALYSIS OF SUNYAEV–ZEL’DOVICH EFFECT MEASUREMENTS FROM PLANCK AND BOLOCAM FOR A SET OF 47 MASSIVE GALAXY CLUSTERS , 2016, 1605.03541.

[66]  R. Bouwens,et al.  A REMARKABLY LUMINOUS GALAXY AT Z = 11.1 MEASURED WITH HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY , 2016, 1603.00461.

[67]  J. Kneib,et al.  Systematic or signal? How dark matter misalignments can bias strong lensing models of galaxy clusters , 2016, 1601.06793.

[68]  J. Silk,et al.  A free-form mass model of the Hubble Frontier Fields cluster AS1063 (RXC J2248.7−4431) with over one hundred constraints , 2015, 1512.07916.

[69]  M. Nonino,et al.  DEJA VU ALL OVER AGAIN: THE REAPPEARANCE OF SUPERNOVA REFSDAL , 2015, 1512.04654.

[70]  M. Oguri,et al.  PRECISE STRONG LENSING MASS MODELING OF FOUR HUBBLE FRONTIER FIELD CLUSTERS AND A SAMPLE OF MAGNIFIED HIGH-REDSHIFT GALAXIES , 2015, 1510.06400.

[71]  R. Massey,et al.  Hubble Frontier Fields: predictions for the return of SN Refsdal with the MUSE and GMOS spectrographs , 2015, 1509.08914.

[72]  L. Williams,et al.  Quantifying substructures in Hubble Frontier Field clusters: comparison with ΛCDM simulations , 2015, 1507.01532.

[73]  B. Weiner,et al.  SN REFSDAL: PHOTOMETRY AND TIME DELAY MEASUREMENTS OF THE FIRST EINSTEIN CROSS SUPERNOVA , 2015, 1512.05734.

[74]  R. Massey,et al.  Warm–hot baryons comprise 5–10 per cent of filaments in the cosmic web , 2015, Nature.

[75]  M. Meneghetti,et al.  CLASH-VLT: DISSECTING THE FRONTIER FIELDS GALAXY CLUSTER MACS J0416.1-2403 WITH ∼800 SPECTRA OF MEMBER GALAXIES , 2015, 1511.02522.

[76]  David O. Jones,et al.  TWO SNe Ia AT REDSHIFT ∼2: IMPROVED CLASSIFICATION AND REDSHIFT DETERMINATION WITH MEDIUM-BAND INFRARED IMAGING , 2015 .

[77]  J. Diego,et al.  “REFSDAL” MEETS POPPER: COMPARING PREDICTIONS OF THE RE-APPEARANCE OF THE MULTIPLY IMAGED SUPERNOVA BEHIND MACSJ1149.5+2223 , 2015, 1510.05750.

[78]  Adam G. Riess,et al.  THE RATE OF CORE COLLAPSE SUPERNOVAE TO REDSHIFT 2.5 FROM THE CANDELS AND CLASH SUPERNOVA SURVEYS , 2015, 1509.06574.

[79]  A. Fontana,et al.  THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). I. SURVEY OVERVIEW AND FIRST DATA RELEASE , 2015, 1509.00475.

[80]  David O. Jones,et al.  ERRATUM: “TWO SNe Ia AT REDSHIFT ∼2: IMPROVED CLASSIFICATION AND REDSHIFT DETERMINATION WITH MEDIUM-BAND INFRARED IMAGING” (2015, AJ, 150, 156) , 2015, 1508.03100.

[81]  A. Fontana,et al.  ULTRA-DEEP KS-BAND IMAGING OF THE HUBBLE FRONTIER FIELDS , 2015, 1606.07450.

[82]  Y. Jiménez-Teja,et al.  DISENTANGLING THE ICL WITH THE CHEFs: ABELL 2744 AS A CASE STUDY , 2015, 1602.07306.

[83]  L. Williams,et al.  Testing light-traces-mass in Hubble Frontier Fields Cluster MACS-J0416.1-240 , 2015, Proceedings of the International Astronomical Union.

[84]  R. Bouwens,et al.  ULTRADEEP IRAC IMAGING OVER THE HUDF AND GOODS-SOUTH: SURVEY DESIGN AND IMAGING DATA RELEASE , 2015, 1507.08313.

[85]  M. Postman,et al.  CLASH: JOINT ANALYSIS OF STRONG-LENSING, WEAK-LENSING SHEAR, AND MAGNIFICATION DATA FOR 20 GALAXY CLUSTERS , 2015, 1507.04385.

[86]  R. Massey,et al.  FRONTIER FIELDS: SUBARU WEAK-LENSING ANALYSIS OF THE MERGING GALAXY CLUSTER A2744 , 2015, 1507.03992.

[87]  A. Loeb,et al.  An Empirical Model for the Galaxy Luminosity and Star-Formation Rate Function at High Redshift , 2015, 1507.00999.

[88]  D. Masters,et al.  THE IMPOSSIBLY EARLY GALAXY PROBLEM , 2015, 1506.01377.

[89]  J. Dunlop,et al.  S-CANDELS: THE SPITZER-COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS , 2015, 1506.01323.

[90]  R. Bouwens,et al.  THE BRIGHT END OF THE z ∼ 9 AND z ∼ 10 UV LUMINOSITY FUNCTIONS USING ALL FIVE CANDELS FIELDS , 2015, 1506.01035.

[91]  R. Bouwens,et al.  z ≳ 7 GALAXIES WITH RED SPITZER/IRAC [3.6]–[4.5] COLORS IN THE FULL CANDELS DATA SET: THE BRIGHTEST-KNOWN GALAXIES AT z ∼ 7–9 AND A PROBABLE SPECTROSCOPIC CONFIRMATION AT z = 7.48 , 2015, 1506.00854.

[92]  M. Meneghetti,et al.  ILLUMINATING A DARK LENS: A TYPE Ia SUPERNOVA MAGNIFIED BY THE FRONTIER FIELDS GALAXY CLUSTER ABELL 2744 , 2015, 1505.06211.

[93]  R. Maiolino,et al.  Strangulation as the primary mechanism for shutting down star formation in galaxies , 2015, Nature.

[94]  J. Diego,et al.  A free-form prediction for the reappearance of supernova Refsdal in the Hubble Frontier Fields cluster MACSJ1149.5+2223 , 2015, 1504.05953.

[95]  A. Finoguenov,et al.  LoCuSS: THE SLOW QUENCHING OF STAR FORMATION IN CLUSTER GALAXIES AND THE NEED FOR PRE-PROCESSING , 2015, 1504.05604.

[96]  Jr.,et al.  THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). IV. MASS RECONSTRUCTION OF THE LENSING CLUSTER ABELL 2744 FROM FRONTIER FIELD IMAGING AND GLASS SPECTROSCOPY , 2015, 1504.02405.

[97]  H. Ferguson,et al.  AN INCREASING STELLAR BARYON FRACTION IN BRIGHT GALAXIES AT HIGH REDSHIFT , 2015, 1504.00005.

[98]  David Harvey,et al.  The nongravitational interactions of dark matter in colliding galaxy clusters , 2015, Science.

[99]  B. O’Shea,et al.  PROBING THE ULTRAVIOLET LUMINOSITY FUNCTION OF THE EARLIEST GALAXIES WITH THE RENAISSANCE SIMULATIONS , 2015, 1503.01110.

[100]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XXVII . The second Planck catalogue of Sunyaev-Zeldovich sources , 2016 .

[101]  M. Bradač,et al.  On the origin of the intracluster light in massive galaxy clusters , 2015, 1501.02251.

[102]  M. Oguri Predicted properties of multiple images of the strongly lensed supernova SN Refsdal. , 2014, 1411.6443.

[103]  A. Fontana,et al.  Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens , 2014, Science.

[104]  I. McCarthy,et al.  Star formation quenching in simulated group and cluster galaxies: when, how, and why? , 2014, 1410.8161.

[105]  J. Diego,et al.  Hubble Frontier Field free-form mass mapping of the massive multiple-merging cluster MACSJ0717.5+3745 , 2014, 1410.7019.

[106]  R. Massey,et al.  Hubble Frontier Fields: a high-precision strong-lensing analysis of the massive galaxy cluster Abell 2744 using ∼180 multiple images , 2014, 1409.8663.

[107]  M. Sereno CoMaLit – III. Literature catalogues of weak lensing clusters of galaxies (LC$^2$) , 2014, 1409.5435.

[108]  M. Oguri,et al.  HUBBLE FRONTIER FIELDS FIRST COMPLETE CLUSTER DATA: FAINT GALAXIES AT z ∼ 5–10 FOR UV LUMINOSITY FUNCTIONS AND COSMIC REIONIZATION , 2014, 1408.6903.

[109]  J. Diego,et al.  Free-form lensing implications for the collision of dark matter and gas in the frontier fields cluster MACS J0416.1−2403 , 2014, 1406.1217.

[110]  D. Coe,et al.  FRONTIER FIELDS: HIGH-REDSHIFT PREDICTIONS AND EARLY RESULTS , 2014, 1405.0011.

[111]  J. Silk,et al.  A SIMPLE TECHNIQUE FOR PREDICTING HIGH-REDSHIFT GALAXY EVOLUTION , 2014, 1404.5299.

[112]  D. Stern,et al.  THE EVOLUTION OF STAR FORMATION ACTIVITY IN CLUSTER GALAXIES OVER 0.15 < z < 1.5 , 2016, 1610.01498.

[113]  K. Sharon,et al.  REVISED LENS MODEL FOR THE MULTIPLY IMAGED LENSED SUPERNOVA, “SN REFSDAL” IN MACS J1149+2223 , 2014, 1411.6933.

[114]  M. Meneghetti,et al.  HUBBLE SPACE TELESCOPE COMBINED STRONG AND WEAK LENSING ANALYSIS OF THE CLASH SAMPLE: MASS AND MAGNIFICATION MODELS AND SYSTEMATIC UNCERTAINTIES , 2014, 1411.1414.

[115]  J. Kneib,et al.  Mass and magnification maps for the Hubble Space Telescope Frontier Fields clusters: implications for high-redshift studies , 2014 .

[116]  J. Dunlop,et al.  ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS , 2014, 1410.0962.

[117]  O. Fèvre,et al.  STAR FORMATION AT 4 < z < 6 FROM THE SPITZER LARGE AREA SURVEY WITH HYPER-SUPRIME-CAM (SPLASH) , 2014, 1407.7030.

[118]  R. Massey,et al.  Hubble Frontier Fields: the geometry and dynamics of the massive galaxy cluster merger MACSJ0416.1-2403 , 2014, 1406.3011.

[119]  J. Diego,et al.  A RIGOROUS FREE-FORM LENS MODEL OF A2744 TO MEET THE HUBBLE FRONTIER FIELDS CHALLENGE , 2014, 1406.2702.

[120]  O. Lahav,et al.  CLASH-X: A COMPARISON OF LENSING AND X-RAY TECHNIQUES FOR MEASURING THE MASS PROFILES OF GALAXY CLUSTERS , 2014, 1405.7876.

[121]  R. Massey,et al.  Hubble Frontier Fields: a high-precision strong-lensing analysis of galaxy cluster MACSJ0416.1-2403 using ∼200 multiple images , 2014, 1405.3582.

[122]  I. Trujillo,et al.  INTRACLUSTER LIGHT AT THE FRONTIER: A2744 , 2014, 1405.2070.

[123]  J. Silverman,et al.  A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0–6 , 2014, 1405.2041.

[124]  V. Springel,et al.  Properties of galaxies reproduced by a hydrodynamic simulation , 2014, Nature.

[125]  R. Cen,et al.  Gas loss in simulated galaxies as they fall into clusters , 2014, Proceedings of the National Academy of Sciences.

[126]  D. Coe,et al.  LENS MODELS AND MAGNIFICATION MAPS OF THE SIX HUBBLE FRONTIER FIELDS CLUSTERS , 2014, 1405.0222.

[127]  M. Meneghetti,et al.  CLASH: WEAK-LENSING SHEAR-AND-MAGNIFICATION ANALYSIS OF 20 GALAXY CLUSTERS , 2014, 1404.1375.

[128]  M. Franx,et al.  UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.

[129]  J. Diego,et al.  YOUNG GALAXY CANDIDATES IN THE HUBBLE FRONTIER FIELDS. I. A2744 , 2014, 1402.6743.

[130]  L. Bradley,et al.  THE LUMINOSITY FUNCTION AT z ∼ 8 FROM 97 Y-BAND DROPOUTS: INFERENCES ABOUT REIONIZATION , 2014, 1402.4129.

[131]  T. Schrabback,et al.  SPITZER ULTRA FAINT SURVEY PROGRAM (SURFS UP). I. AN OVERVIEW , 2014, 1402.2352.

[132]  F. Boone,et al.  The first Frontier Fields cluster: 4.5 μm excess in a z ~ 8 galaxy candidate in Abell 2744 , 2014, 1401.8263.

[133]  David O. Jones,et al.  TYPE Ia SUPERNOVA RATE MEASUREMENTS TO REDSHIFT 2.5 FROM CANDELS: SEARCHING FOR PROMPT EXPLOSIONS IN THE EARLY UNIVERSE , 2014, 1401.7978.

[134]  I. Hook,et al.  Lensed Type Ia supernovae as probes of cluster mass models , 2013, 1312.2576.

[135]  S. Borgani,et al.  On the formation and physical properties of the intracluster light in hierarchical galaxy formation models , 2013, 1311.2076.

[136]  S. B. Cenko,et al.  TYPE-Ia SUPERNOVA RATES TO REDSHIFT 2.4 FROM CLASH: THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE , 2013, 1310.3495.

[137]  T. Kitching,et al.  On the cross-section of dark matter using substructure infall into galaxy clusters , 2013, 1310.1731.

[138]  S. Borgani,et al.  Characterizing diffused stellar light in simulated galaxy clusters , 2013, 1310.1396.

[139]  M. L. N. Ashby,et al.  THE MOST LUMINOUS z ∼ 9–10 GALAXY CANDIDATES YET FOUND: THE LUMINOSITY FUNCTION, COSMIC STAR-FORMATION RATE, AND THE FIRST MASS DENSITY ESTIMATE AT 500 Myr , 2013, 1309.2280.

[140]  F. Kahlhoefer,et al.  Colliding clusters and dark matter self-interactions , 2013, 1308.3419.

[141]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[142]  R. Blandford,et al.  Weighing the Giants - I. Weak-lensing masses for 51 massive galaxy clusters: project overview, data analysis methods and cluster images , 2012, 1208.0597.

[143]  Laurens van der Maaten,et al.  Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..

[144]  David O. Jones,et al.  THREE GRAVITATIONALLY LENSED SUPERNOVAE BEHIND CLASH GALAXY CLUSTERS , 2013, 1312.0943.

[145]  J. Bock,et al.  A MEASUREMENT OF THE KINETIC SUNYAEV–ZEL'DOVICH SIGNAL TOWARD MACS J0717.5+3745 , 2013, 1312.3680.

[146]  O. Ilbert,et al.  MULTI-WAVELENGTH SEDs OF HERSCHEL-SELECTED GALAXIES IN THE COSMOS FIELD , 2013, 1310.0474.

[147]  T. Kitching,et al.  Dark matter astrometry: accuracy of subhalo positions for the measurement of self-interaction cross-sections , 2013, 1305.2117.

[148]  M. Franx,et al.  THE HST EXTREME DEEP FIELD (XDF): COMBINING ALL ACS AND WFC3/IR DATA ON THE HUDF REGION INTO THE DEEPEST FIELD EVER , 2013, 1305.1931.

[149]  K. Umetsu MODEL-FREE MULTI-PROBE LENSING RECONSTRUCTION OF CLUSTER MASS PROFILES , 2013, 1302.0514.

[150]  C. Conroy Modeling the Panchromatic Spectral Energy Distributions of Galaxies , 2013, 1301.7095.

[151]  Michele Cirasuolo,et al.  THE 2012 HUBBLE ULTRA DEEP FIELD (UDF12): OBSERVATIONAL OVERVIEW , 2012, 1212.1448.

[152]  R. Bouwens,et al.  A REST-FRAME OPTICAL VIEW ON z ∼ 4 GALAXIES. I. COLOR AND AGE DISTRIBUTIONS FROM DEEP IRAC PHOTOMETRY OF THE IUDF10 AND GOODS SURVEYS , 2012, 1211.1010.

[153]  Cambridge,et al.  Why does the environmental influence on group and cluster galaxies extend beyond the virial radius , 2012, 1210.8407.

[154]  Michele Cirasuolo,et al.  THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5–12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1211.6804.

[155]  R. Bouwens,et al.  THE SPECTRAL ENERGY DISTRIBUTIONS OF z ∼ 8 GALAXIES FROM THE IRAC ULTRA DEEP FIELDS: EMISSION LINES, STELLAR MASSES, AND SPECIFIC STAR FORMATION RATES AT 650 MYR , 2012, 1209.3037.

[156]  Johan Richard,et al.  A weak lensing mass reconstruction of the large‐scale filament feeding the massive galaxy cluster MACS J0717.5+3745 , 2012, 1208.4323.

[157]  J. Dunlop,et al.  KECK SPECTROSCOPY OF 3 < z < 7 FAINT LYMAN BREAK GALAXIES: THE IMPORTANCE OF NEBULAR EMISSION IN UNDERSTANDING THE SPECIFIC STAR FORMATION RATE AND STELLAR MASS DENSITY , 2012, 1208.3529.

[158]  Norbert Werner,et al.  A filament of dark matter between two clusters of galaxies , 2012, Nature.

[159]  W. Couch,et al.  SHOCKING TAILS IN THE MAJOR MERGER ABELL 2744 , 2012, 1204.1052.

[160]  Chien Y. Peng,et al.  GALAPAGOS: From Pixels to Parameters , 2012, 1203.1831.

[161]  S. Borgani,et al.  Simulating the evolution of disc galaxies in a group environment – I. The influence of the global tidal field , 2012, 1202.0550.

[162]  R. Cen,et al.  Effects on galaxy evolution: pair interactions versus environment , 2011, 1111.0636.

[163]  K. Dawson,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. VI. THE VOLUMETRIC TYPE Ia SUPERNOVA RATE , 2011, 1110.6442.

[164]  R. Bouwens,et al.  OVERDENSITIES OF Y-DROPOUT GALAXIES FROM THE BRIGHTEST-OF-REIONIZING GALAXIES SURVEY: A CANDIDATE PROTOCLUSTER AT REDSHIFT z ≈ 8 , 2011, 1110.0468.

[165]  O. Lahav,et al.  THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW , 2011, 1106.3328.

[166]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[167]  J. Rhodes,et al.  Creation of cosmic structure in the complex galaxy cluster merger Abell 2744 , 2011, 1103.2772.

[168]  Cameron K. McBride,et al.  THE QUANTITY OF INTRACLUSTER LIGHT: COMPARING THEORETICAL AND OBSERVATIONAL MEASUREMENT TECHNIQUES USING SIMULATED CLUSTERS , 2011, 1103.1215.

[169]  T. Kitching,et al.  Cluster bulleticity: Cluster bulleticity , 2010, 1007.1924.

[170]  H. Rix,et al.  A COSMIC VARIANCE COOKBOOK , 2010, 1001.1737.

[171]  J. W. MacKenty,et al.  THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: DESIGN AND PRELIMINARY RESULTS , 2010, 1011.4075.

[172]  R. Ellis,et al.  Early star-forming galaxies and the reionization of the Universe , 2010, Nature.

[173]  Z. Cai,et al.  PROBING VERY BRIGHT END OF GALAXY LUMINOSITY FUNCTION AT z ≳ 7 USING HUBBLE SPACE TELESCOPE PURE PARALLEL OBSERVATIONS , 2010, 1010.2261.

[174]  H. Shan,et al.  NOISY WEAK-LENSING CONVERGENCE PEAK STATISTICS NEAR CLUSTERS OF GALAXIES AND BEYOND , 2010, 1006.5121.

[175]  M. Oguri The Mass Distribution of SDSS J1004$+$4112 Revisited , 2010, 1005.3103.

[176]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[177]  J. Kneib,et al.  LoCuSS: first results from strong-lensing analysis of 20 massive galaxy clusters at z= 0.2 , 2009, 0911.3302.

[178]  Santiago,et al.  Global environmental effects versus galaxy interactions , 2009, 0904.2851.

[179]  P. Bekaert,et al.  Non-parametric strong lens inversion of SDSS J1004+4112 , 2009, 0904.2382.

[180]  D. Coe,et al.  New Multiply-Lensed Galaxies Identified in ACS/NIC3 Observations of Cl0024+1654, Using an Improved Mass Model , 2009, 0902.3971.

[181]  J. Kneib,et al.  Multiscale cluster lens mass mapping - I. Strong lensing modelling , 2009, 0901.3792.

[182]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[183]  Edinburgh,et al.  Revealing the Properties of Dark Matter in the Merging Cluster MACS J0025.4–1222 , 2008, 0806.2320.

[184]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[185]  J. Kneib,et al.  A Bayesian approach to strong lensing modelling of galaxy clusters , 2007, 0706.0048.

[186]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[187]  R. Wechsler,et al.  The Hierarchical Build-Up of Massive Galaxies and the Intracluster Light since z = 1 , 2007, astro-ph/0703374.

[188]  J. Bullock,et al.  Shredded Galaxies as the Source of Diffuse Intrahalo Light on Varying Scales , 2007, astro-ph/0703004.

[189]  Columbia,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.

[190]  S. Borgani,et al.  The importance of mergers for the origin of intracluster stars in cosmological simulations of galaxy clusters , 2007, astro-ph/0701925.

[191]  D. Calzetti,et al.  COSMOS: Hubble Space Telescope Observations , 2006, astro-ph/0612306.

[192]  Max Tegmark,et al.  Combined reconstruction of weak and strong lensing data with WSLAP , 2005, Monthly Notices of the Royal Astronomical Society.

[193]  P. Hudelot,et al.  Combining Strong and Weak Gravitational Lensing in Abell 1689 , 2006, astro-ph/0612165.

[194]  C. Moss Enhanced mergers of galaxies in low-redshift clusters , 2006, astro-ph/0608672.

[195]  D. Clowe,et al.  A Direct Empirical Proof of the Existence of Dark Matter , 2006, astro-ph/0608407.

[196]  Tucson,et al.  Strong and Weak Lensing United. III. Measuring the Mass Distribution of the Merging Galaxy Cluster 1ES 0657–558 , 2006, astro-ph/0608408.

[197]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[198]  H. Dejonghe,et al.  A genetic algorithm for the non-parametric inversion of strong lensing systems , 2006, astro-ph/0601124.

[199]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[200]  T. Broadhurst,et al.  The Surprisingly Steep Mass Profile of A1689, from a Lensing Analysis of Subaru Images , 2004, astro-ph/0412192.

[201]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[202]  U. Florida,et al.  Weak-Lensing Mass Reconstruction of the Interacting Cluster 1E 0657–558: Direct Evidence for the Existence of Dark Matter , 2003, astro-ph/0312273.

[203]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[204]  S. M. Fall,et al.  The Great Observatories Origins Deep Survey: Initial Results from Optical and Near-Infrared Imaging , 2003, astro-ph/0309105.

[205]  Massimo Stiavelli,et al.  The Hubble Ultra Deep Field , 2003, astro-ph/0607632.

[206]  J. Kneib,et al.  Constraints on the Collisional Nature of the Dark Matter from Gravitational Lensing in the Cluster A2218 , 2002, astro-ph/0207045.

[207]  P. Gondoin,et al.  XMM-Newton observatory. I. The spacecraft and operations , 2001 .

[208]  J. Navarro,et al.  The Origin of Star Formation Gradients in Rich Galaxy Clusters , 2000, astro-ph/0004078.

[209]  Martin C. Weisskopf,et al.  Chandra X-ray Observatory (CXO): overview , 1999, Astronomical Telescopes and Instrumentation.

[210]  L. Moscardini,et al.  Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North , 1999, astro-ph/9902290.

[211]  M. Giavalisco,et al.  A Counts-in-Cells Analysis Of Lyman-break Galaxies At Redshift z ~ 3 , 1998, astro-ph/9804236.

[212]  D. Tucker,et al.  The Influence of Environment on the Star Formation Rates of Galaxies , 1997, astro-ph/9712319.

[213]  J. Bond,et al.  How filaments of galaxies are woven into the cosmic web , 1995, Nature.

[214]  G. Lake,et al.  Galaxy harassment and the evolution of clusters of galaxies , 1995, Nature.

[215]  J. E. Gunn,et al.  Stellar spectrophotometric atlas, wavelengths from 3130 to 10800 A , 1983 .

[216]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[217]  J. B. Oke Absolute spectral energy distributions for white dwarfs , 1974 .

[218]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .