The BUFFALO HST Survey
暂无分享,去创建一个
J. Rhodes | R. Massey | M. Meneghetti | J. Kneib | R. Bouwens | M. Nonino | M. Neyrinck | P. Jablonka | A. Amara | M. Sereno | J. Diego | D. Coe | L. Bradley | T. Broadhurst | O. Graur | L. Moustakas | S. Rodney | K. Umetsu | A. Zitrin | S. Jha | C. McCully | D. Gruen | B. Mobasher | L. Strolger | D. Masters | P. Capak | C. Steinhardt | A. Faisst | R. Cen | E. Jullo | A. Edge | M. Oguri | M. Limousin | J. Richard | D. Lagattuta | H. Shan | D. Harvey | D. Clowe | B. Frye | H. Ebeling | M. Jauzac | E. Murphy | M. Schaller | I. Davidzon | L. Williams | A. Niemiec | B. Clément | G. Magdis | R. Cañas | C. Lagos | J. Weaver | R. Rich | B. Darvish | Lin Yan | K. Sharon | P. Oesch | E. Egami | S. Toft | M. Maturi | P. Natarajan | V. Kokorev | S. McGee | G. Squires | S. Ettori | S. Tam | D. Eckert | A. Robertson | G. Mahler | T. Connor | C. Tchernin | G. Brammer | R. V. van Weeren | M. Montes | H. Atek | Y. Bahé | S. Bose | L. Furtak | C. Gómez-Guijarro | T. J. Wilson | C. Bœhm | J. D. Remolina González | A. Koekemoer | A. Sneppen | H. Hensley | Adrian Lopez | A. Acebrón | N. B. Linzer | A. von der Linden | B. Hovis-Afflerbach | K. O'Connor | V. Kokorev | Graham P. Smith | A. Gonzalez | J. Allingham | C. Gómez-Guijarro | Y. Bahé | A. Pagul | Anthony. H. Gonzalez | A. Koekemoer | Anthony H. Gonzalez
[1] E. Medezinski,et al. Free-form Grale reconstruction of Abell 2744: robustness of uncertainties against changes in lensing data , 2019, Monthly Notices of the Royal Astronomical Society.
[2] R. Bouwens,et al. The Super Eight Galaxies: Properties of a Sample of Very Bright Galaxies at 7 < z < 8 , 2019, The Astrophysical Journal.
[3] M. Donahue,et al. On the Origin of the Scatter in the Red Sequence: An Analysis of Four CLASH Clusters , 2019, The Astrophysical Journal.
[4] M. Nonino,et al. RELICS: Reionization Lensing Cluster Survey , 2019, The Astrophysical Journal.
[5] J. Kneib,et al. Probing 3D Structure with a Large MUSE Mosaic: Extending the Mass Model of Frontier Field Abell 370 , 2019, Monthly Notices of the Royal Astronomical Society.
[6] B. Frye,et al. Highly Magnified Stars in Lensing Clusters: New Evidence in a Galaxy Lensed by MACS J0416.1-2403 , 2019, The Astrophysical Journal.
[7] Nick Kaiser,et al. Searching for Highly Magnified Stars at Cosmological Distances: Discovery of a Redshift 0.94 Blue Supergiant in Archival Images of the Galaxy Cluster MACS J0416.1-2403 , 2019, The Astrophysical Journal.
[8] A. Biviano,et al. Quantifying the suppression of the (un)-obscured star formation in galaxy cluster cores at 0.2≲ z ≲0.9 , 2018, Monthly Notices of the Royal Astronomical Society.
[9] C. Giocoli,et al. Dark matter stripping in galaxy clusters: a look at the stellar-to-halo mass relation in the Illustris simulation , 2018, Monthly Notices of the Royal Astronomical Society.
[10] R. Massey,et al. Observable tests of self-interacting dark matter in galaxy clusters: cosmological simulations with SIDM and baryons , 2018, Monthly Notices of the Royal Astronomical Society.
[11] Andrew P. Hearin,et al. UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z = 0−10 , 2018, Monthly Notices of the Royal Astronomical Society.
[12] C. Conselice,et al. PLCK G165.7+67.0: Analysis of a Massive Lensing Cluster in a Hubble Space Telescope Census of Submillimeter Giant Arcs Selected Using Planck/Herschel , 2018, The Astrophysical Journal.
[13] M. Neyrinck,et al. Galaxy Quenching from Cosmic Web Detachment , 2016, The Open Journal of Astrophysics.
[14] M. Radovich,et al. GASP XIII. Star formation in gas outside galaxies , 2018, Monthly Notices of the Royal Astronomical Society.
[15] Shannon G. Patel,et al. Wide-field Optical Spectroscopy of Abell 133: A Search for Filaments Reported in X-Ray Observations , 2018, The Astrophysical Journal.
[16] D. Coe,et al. The Bright-end Galaxy Candidates at z ∼ 9 from 79 Independent HST Fields , 2018, The Astrophysical Journal.
[17] A. Robotham,et al. Shark: introducing an open source, free, and flexible semi-analytic model of galaxy formation , 2018, Monthly Notices of the Royal Astronomical Society.
[18] I. Trujillo,et al. Intracluster light: a luminous tracer for dark matter in clusters of galaxies , 2018, Monthly Notices of the Royal Astronomical Society.
[19] M. Lombardi,et al. Dissection of the Collisional and Collisionless Mass Components in a Mini Sample of CLASH and HFF Massive Galaxy Clusters at z ≈ 0.4 , 2018, The Astrophysical Journal.
[20] C. Pichon,et al. Introducing a new, robust galaxy-finder algorithm for simulations , 2018, Monthly Notices of the Royal Astronomical Society.
[21] L. Williams,et al. The role of multiple images and model priors in measuringH0 from supernova Refsdal in galaxy cluster MACS J1149.5+2223 , 2018, Monthly Notices of the Royal Astronomical Society.
[22] M. Verdugo,et al. Color gradients reflect an inside-out growth in early-type galaxies of the cluster MACS J1206.2-0847 , 2018, Astronomy & Astrophysics.
[23] M. Nonino,et al. Galaxy pre-processing in substructures around z ∼ 0.4 galaxy clusters , 2018, Monthly Notices of the Royal Astronomical Society.
[24] T. Schrabback,et al. Mass Modeling of Frontier Fields Cluster MACS J1149.5+2223 Using Strong and Weak Lensing , 2018, 1806.00698.
[25] T. Schrabback,et al. Mass and Light of Abell 370: A Strong and Weak Lensing Analysis , 2018, The Astrophysical Journal.
[26] J. Primack,et al. Dark matter halo properties versus local density and cosmic web location , 2018, Monthly notices of the Royal Astronomical Society.
[27] M. Huertas-Company,et al. On the Transition of the Galaxy Quenching Mode at 0.5 < z < 1 in CANDELS , 2018, The Astrophysical Journal.
[28] M. Meneghetti,et al. The Projected Dark and Baryonic Ellipsoidal Structure of 20 CLASH Galaxy Clusters , 2018, The Astrophysical Journal.
[29] M. Meneghetti,et al. CLUMP-3D: Testing ΛCDM with Galaxy Cluster Shapes , 2018, The Astrophysical Journal.
[30] M. Meneghetti,et al. CLUMP-3D: Three-dimensional Shape and Structure of 20 CLASH Galaxy Clusters from Combined Weak and Strong Lensing , 2018, The Astrophysical Journal.
[31] M. Lombardi,et al. Measuring the Value of the Hubble Constant “à la Refsdal” , 2018, The Astrophysical Journal.
[32] Cambridge,et al. Spitzer Matching Survey of the UltraVISTA Ultra-deep Stripes (SMUVS): Full-mission IRAC Mosaics and Catalogs , 2018, The Astrophysical Journal Supplement Series.
[33] L. Williams,et al. Evidence for the line-of-sight structure in the Hubble Frontier Field cluster, MACSJ0717.5+3745 , 2017, Monthly Notices of the Royal Astronomical Society.
[34] R. Massey,et al. Growing a ‘cosmic beast’: observations and simulations of MACS J0717.5+3745 , 2017, Monthly Notices of the Royal Astronomical Society.
[35] M. Donahue,et al. Lost but not forgotten: Intracluster light in galaxy groups and clusters , 2017, 1710.11313.
[36] Johan Hidding,et al. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations , 2017, Royal Society Open Science.
[37] Iac,et al. Intracluster light at the Frontier - II. The Frontier Fields Clusters , 2017, 1710.03240.
[38] Kyle L. Luther,et al. The Discovery of a Gravitationally Lensed Supernova Ia at Redshift 2.22 , 2017, The Astrophysical Journal.
[39] O. Ilbert,et al. COSMOS2015 photometric redshifts probe the impact of filaments on galaxy properties , 2017, 1702.08810.
[40] R. Bouwens,et al. Strong-lensing analysis of A2744 with MUSE and Hubble Frontier Fields images , 2017, 1702.06962.
[41] M. Oguri,et al. Full-data Results of Hubble Frontier Fields: UV Luminosity Functions at z ∼ 6–10 and a Consistent Picture of Cosmic Reionization , 2017, 1702.04867.
[42] D. Wittman,et al. The Mismeasure of Mergers: Revised Limits on Self-interacting Dark Matter in Merging Galaxy Clusters , 2017, The Astrophysical Journal.
[43] M. Oguri,et al. Size–Luminosity Relations and UV Luminosity Functions at z = 6–9 Simultaneously Derived from the Complete Hubble Frontier Fields Data , 2017, 1710.07301.
[44] M. Postman,et al. Crowded Field Galaxy Photometry: Precision Colors in the CLASH Clusters , 2017, 1709.01925.
[45] R. Kraft,et al. X-Ray Morphological Analysis of the Planck ESZ Clusters , 2017, 1708.02590.
[46] B. Weiner,et al. Two peculiar fast transients in a strongly lensed host galaxy , 2017, 1707.02434.
[47] J. Kneib,et al. Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens , 2017, 1706.10279.
[48] F. Durret,et al. The faint end of the red sequence galaxy luminosity function: unveiling surface brightness selection effects with the CLASH clusters , 2017, 1704.08871.
[49] C. Giocoli,et al. Hubble Frontier Fields : systematic errors in strong lensing models of galaxy clusters – implications for cosmography. , 2017, 1704.05380.
[50] S. White,et al. The Cluster-EAGLE project: global properties of simulated clusters with resolved galaxies , 2017, 1703.10907.
[51] S. White,et al. The Hydrangea simulations: galaxy formation in and around massive clusters , 2017, 1703.10610.
[52] O. Fèvre,et al. The COSMOS2015 galaxy stellar mass function . Thirteen billion years of stellar mass assembly in ten snapshots , 2017, 1701.02734.
[53] B. Garilli,et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS): galaxy segregation inside filaments at z ≃ 0.7 , 2016, 1611.07045.
[54] M. Meneghetti,et al. The Frontier Fields lens modelling comparison project , 2016, 1606.04548.
[55] J. Anderson,et al. The Frontier Fields: Survey Design and Initial Results , 2016, 1605.06567.
[56] Heidelberg,et al. Abell 2744 : too much substructure for ΛCDM? , 2016, 1611.02790.
[57] T. Treu,et al. Characterizing Intracluster Light in the Hubble Frontier Fields , 2016, 1610.08503.
[58] T. Treu,et al. THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). VII. THE DIVERSITY OF THE DISTRIBUTION OF STAR FORMATION IN CLUSTER AND FIELD GALAXIES AT 0.3 ≤ z ≤ 0.7 , 2016, 1610.04621.
[59] G. Bernstein,et al. A free-form lensing model of A370 revealing stellar mass dominated BCGs, in Hubble Frontier Fields images , 2016, 1609.04822.
[60] K. Sharon,et al. THE SYSTEMATICS OF STRONG LENS MODELING QUANTIFIED: THE EFFECTS OF CONSTRAINT SELECTION AND REDSHIFT INFORMATION ON MAGNIFICATION, MASS, AND MULTIPLE IMAGE PREDICTABILITY , 2016, 1608.08713.
[61] G. Bruzual,et al. Modelling the nebular emission from primeval to present-day star-forming galaxies , 2016, 1607.06086.
[62] R. Massey,et al. The extraordinary amount of substructure in the Hubble Frontier Fields cluster Abell 2744 , 2016, 1606.04527.
[63] D. Coe,et al. Lens models under the microscope: Comparison of Hubble Frontier Field cluster magnification maps , 2016, 1605.07621.
[64] B. Hilbert,et al. The Frontier Fields: Survey Design , 2016 .
[65] J. Merten,et al. A COMPARISON AND JOINT ANALYSIS OF SUNYAEV–ZEL’DOVICH EFFECT MEASUREMENTS FROM PLANCK AND BOLOCAM FOR A SET OF 47 MASSIVE GALAXY CLUSTERS , 2016, 1605.03541.
[66] R. Bouwens,et al. A REMARKABLY LUMINOUS GALAXY AT Z = 11.1 MEASURED WITH HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY , 2016, 1603.00461.
[67] J. Kneib,et al. Systematic or signal? How dark matter misalignments can bias strong lensing models of galaxy clusters , 2016, 1601.06793.
[68] J. Silk,et al. A free-form mass model of the Hubble Frontier Fields cluster AS1063 (RXC J2248.7−4431) with over one hundred constraints , 2015, 1512.07916.
[69] M. Nonino,et al. DEJA VU ALL OVER AGAIN: THE REAPPEARANCE OF SUPERNOVA REFSDAL , 2015, 1512.04654.
[70] M. Oguri,et al. PRECISE STRONG LENSING MASS MODELING OF FOUR HUBBLE FRONTIER FIELD CLUSTERS AND A SAMPLE OF MAGNIFIED HIGH-REDSHIFT GALAXIES , 2015, 1510.06400.
[71] R. Massey,et al. Hubble Frontier Fields: predictions for the return of SN Refsdal with the MUSE and GMOS spectrographs , 2015, 1509.08914.
[72] L. Williams,et al. Quantifying substructures in Hubble Frontier Field clusters: comparison with ΛCDM simulations , 2015, 1507.01532.
[73] B. Weiner,et al. SN REFSDAL: PHOTOMETRY AND TIME DELAY MEASUREMENTS OF THE FIRST EINSTEIN CROSS SUPERNOVA , 2015, 1512.05734.
[74] R. Massey,et al. Warm–hot baryons comprise 5–10 per cent of filaments in the cosmic web , 2015, Nature.
[75] M. Meneghetti,et al. CLASH-VLT: DISSECTING THE FRONTIER FIELDS GALAXY CLUSTER MACS J0416.1-2403 WITH ∼800 SPECTRA OF MEMBER GALAXIES , 2015, 1511.02522.
[76] David O. Jones,et al. TWO SNe Ia AT REDSHIFT ∼2: IMPROVED CLASSIFICATION AND REDSHIFT DETERMINATION WITH MEDIUM-BAND INFRARED IMAGING , 2015 .
[77] J. Diego,et al. “REFSDAL” MEETS POPPER: COMPARING PREDICTIONS OF THE RE-APPEARANCE OF THE MULTIPLY IMAGED SUPERNOVA BEHIND MACSJ1149.5+2223 , 2015, 1510.05750.
[78] Adam G. Riess,et al. THE RATE OF CORE COLLAPSE SUPERNOVAE TO REDSHIFT 2.5 FROM THE CANDELS AND CLASH SUPERNOVA SURVEYS , 2015, 1509.06574.
[79] A. Fontana,et al. THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). I. SURVEY OVERVIEW AND FIRST DATA RELEASE , 2015, 1509.00475.
[80] David O. Jones,et al. ERRATUM: “TWO SNe Ia AT REDSHIFT ∼2: IMPROVED CLASSIFICATION AND REDSHIFT DETERMINATION WITH MEDIUM-BAND INFRARED IMAGING” (2015, AJ, 150, 156) , 2015, 1508.03100.
[81] A. Fontana,et al. ULTRA-DEEP KS-BAND IMAGING OF THE HUBBLE FRONTIER FIELDS , 2015, 1606.07450.
[82] Y. Jiménez-Teja,et al. DISENTANGLING THE ICL WITH THE CHEFs: ABELL 2744 AS A CASE STUDY , 2015, 1602.07306.
[83] L. Williams,et al. Testing light-traces-mass in Hubble Frontier Fields Cluster MACS-J0416.1-240 , 2015, Proceedings of the International Astronomical Union.
[84] R. Bouwens,et al. ULTRADEEP IRAC IMAGING OVER THE HUDF AND GOODS-SOUTH: SURVEY DESIGN AND IMAGING DATA RELEASE , 2015, 1507.08313.
[85] M. Postman,et al. CLASH: JOINT ANALYSIS OF STRONG-LENSING, WEAK-LENSING SHEAR, AND MAGNIFICATION DATA FOR 20 GALAXY CLUSTERS , 2015, 1507.04385.
[86] R. Massey,et al. FRONTIER FIELDS: SUBARU WEAK-LENSING ANALYSIS OF THE MERGING GALAXY CLUSTER A2744 , 2015, 1507.03992.
[87] A. Loeb,et al. An Empirical Model for the Galaxy Luminosity and Star-Formation Rate Function at High Redshift , 2015, 1507.00999.
[88] D. Masters,et al. THE IMPOSSIBLY EARLY GALAXY PROBLEM , 2015, 1506.01377.
[89] J. Dunlop,et al. S-CANDELS: THE SPITZER-COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS , 2015, 1506.01323.
[90] R. Bouwens,et al. THE BRIGHT END OF THE z ∼ 9 AND z ∼ 10 UV LUMINOSITY FUNCTIONS USING ALL FIVE CANDELS FIELDS , 2015, 1506.01035.
[91] R. Bouwens,et al. z ≳ 7 GALAXIES WITH RED SPITZER/IRAC [3.6]–[4.5] COLORS IN THE FULL CANDELS DATA SET: THE BRIGHTEST-KNOWN GALAXIES AT z ∼ 7–9 AND A PROBABLE SPECTROSCOPIC CONFIRMATION AT z = 7.48 , 2015, 1506.00854.
[92] M. Meneghetti,et al. ILLUMINATING A DARK LENS: A TYPE Ia SUPERNOVA MAGNIFIED BY THE FRONTIER FIELDS GALAXY CLUSTER ABELL 2744 , 2015, 1505.06211.
[93] R. Maiolino,et al. Strangulation as the primary mechanism for shutting down star formation in galaxies , 2015, Nature.
[94] J. Diego,et al. A free-form prediction for the reappearance of supernova Refsdal in the Hubble Frontier Fields cluster MACSJ1149.5+2223 , 2015, 1504.05953.
[95] A. Finoguenov,et al. LoCuSS: THE SLOW QUENCHING OF STAR FORMATION IN CLUSTER GALAXIES AND THE NEED FOR PRE-PROCESSING , 2015, 1504.05604.
[96] Jr.,et al. THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). IV. MASS RECONSTRUCTION OF THE LENSING CLUSTER ABELL 2744 FROM FRONTIER FIELD IMAGING AND GLASS SPECTROSCOPY , 2015, 1504.02405.
[97] H. Ferguson,et al. AN INCREASING STELLAR BARYON FRACTION IN BRIGHT GALAXIES AT HIGH REDSHIFT , 2015, 1504.00005.
[98] David Harvey,et al. The nongravitational interactions of dark matter in colliding galaxy clusters , 2015, Science.
[99] B. O’Shea,et al. PROBING THE ULTRAVIOLET LUMINOSITY FUNCTION OF THE EARLIEST GALAXIES WITH THE RENAISSANCE SIMULATIONS , 2015, 1503.01110.
[100] C. A. Oxborrow,et al. Planck 2015 results Special feature Planck 2015 results XXVII . The second Planck catalogue of Sunyaev-Zeldovich sources , 2016 .
[101] M. Bradač,et al. On the origin of the intracluster light in massive galaxy clusters , 2015, 1501.02251.
[102] M. Oguri. Predicted properties of multiple images of the strongly lensed supernova SN Refsdal. , 2014, 1411.6443.
[103] A. Fontana,et al. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens , 2014, Science.
[104] I. McCarthy,et al. Star formation quenching in simulated group and cluster galaxies: when, how, and why? , 2014, 1410.8161.
[105] J. Diego,et al. Hubble Frontier Field free-form mass mapping of the massive multiple-merging cluster MACSJ0717.5+3745 , 2014, 1410.7019.
[106] R. Massey,et al. Hubble Frontier Fields: a high-precision strong-lensing analysis of the massive galaxy cluster Abell 2744 using ∼180 multiple images , 2014, 1409.8663.
[107] M. Sereno. CoMaLit – III. Literature catalogues of weak lensing clusters of galaxies (LC$^2$) , 2014, 1409.5435.
[108] M. Oguri,et al. HUBBLE FRONTIER FIELDS FIRST COMPLETE CLUSTER DATA: FAINT GALAXIES AT z ∼ 5–10 FOR UV LUMINOSITY FUNCTIONS AND COSMIC REIONIZATION , 2014, 1408.6903.
[109] J. Diego,et al. Free-form lensing implications for the collision of dark matter and gas in the frontier fields cluster MACS J0416.1−2403 , 2014, 1406.1217.
[110] D. Coe,et al. FRONTIER FIELDS: HIGH-REDSHIFT PREDICTIONS AND EARLY RESULTS , 2014, 1405.0011.
[111] J. Silk,et al. A SIMPLE TECHNIQUE FOR PREDICTING HIGH-REDSHIFT GALAXY EVOLUTION , 2014, 1404.5299.
[112] D. Stern,et al. THE EVOLUTION OF STAR FORMATION ACTIVITY IN CLUSTER GALAXIES OVER 0.15 < z < 1.5 , 2016, 1610.01498.
[113] K. Sharon,et al. REVISED LENS MODEL FOR THE MULTIPLY IMAGED LENSED SUPERNOVA, “SN REFSDAL” IN MACS J1149+2223 , 2014, 1411.6933.
[114] M. Meneghetti,et al. HUBBLE SPACE TELESCOPE COMBINED STRONG AND WEAK LENSING ANALYSIS OF THE CLASH SAMPLE: MASS AND MAGNIFICATION MODELS AND SYSTEMATIC UNCERTAINTIES , 2014, 1411.1414.
[115] J. Kneib,et al. Mass and magnification maps for the Hubble Space Telescope Frontier Fields clusters: implications for high-redshift studies , 2014 .
[116] J. Dunlop,et al. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS , 2014, 1410.0962.
[117] O. Fèvre,et al. STAR FORMATION AT 4 < z < 6 FROM THE SPITZER LARGE AREA SURVEY WITH HYPER-SUPRIME-CAM (SPLASH) , 2014, 1407.7030.
[118] R. Massey,et al. Hubble Frontier Fields: the geometry and dynamics of the massive galaxy cluster merger MACSJ0416.1-2403 , 2014, 1406.3011.
[119] J. Diego,et al. A RIGOROUS FREE-FORM LENS MODEL OF A2744 TO MEET THE HUBBLE FRONTIER FIELDS CHALLENGE , 2014, 1406.2702.
[120] O. Lahav,et al. CLASH-X: A COMPARISON OF LENSING AND X-RAY TECHNIQUES FOR MEASURING THE MASS PROFILES OF GALAXY CLUSTERS , 2014, 1405.7876.
[121] R. Massey,et al. Hubble Frontier Fields: a high-precision strong-lensing analysis of galaxy cluster MACSJ0416.1-2403 using ∼200 multiple images , 2014, 1405.3582.
[122] I. Trujillo,et al. INTRACLUSTER LIGHT AT THE FRONTIER: A2744 , 2014, 1405.2070.
[123] J. Silverman,et al. A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0–6 , 2014, 1405.2041.
[124] V. Springel,et al. Properties of galaxies reproduced by a hydrodynamic simulation , 2014, Nature.
[125] R. Cen,et al. Gas loss in simulated galaxies as they fall into clusters , 2014, Proceedings of the National Academy of Sciences.
[126] D. Coe,et al. LENS MODELS AND MAGNIFICATION MAPS OF THE SIX HUBBLE FRONTIER FIELDS CLUSTERS , 2014, 1405.0222.
[127] M. Meneghetti,et al. CLASH: WEAK-LENSING SHEAR-AND-MAGNIFICATION ANALYSIS OF 20 GALAXY CLUSTERS , 2014, 1404.1375.
[128] M. Franx,et al. UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.
[129] J. Diego,et al. YOUNG GALAXY CANDIDATES IN THE HUBBLE FRONTIER FIELDS. I. A2744 , 2014, 1402.6743.
[130] L. Bradley,et al. THE LUMINOSITY FUNCTION AT z ∼ 8 FROM 97 Y-BAND DROPOUTS: INFERENCES ABOUT REIONIZATION , 2014, 1402.4129.
[131] T. Schrabback,et al. SPITZER ULTRA FAINT SURVEY PROGRAM (SURFS UP). I. AN OVERVIEW , 2014, 1402.2352.
[132] F. Boone,et al. The first Frontier Fields cluster: 4.5 μm excess in a z ~ 8 galaxy candidate in Abell 2744 , 2014, 1401.8263.
[133] David O. Jones,et al. TYPE Ia SUPERNOVA RATE MEASUREMENTS TO REDSHIFT 2.5 FROM CANDELS: SEARCHING FOR PROMPT EXPLOSIONS IN THE EARLY UNIVERSE , 2014, 1401.7978.
[134] I. Hook,et al. Lensed Type Ia supernovae as probes of cluster mass models , 2013, 1312.2576.
[135] S. Borgani,et al. On the formation and physical properties of the intracluster light in hierarchical galaxy formation models , 2013, 1311.2076.
[136] S. B. Cenko,et al. TYPE-Ia SUPERNOVA RATES TO REDSHIFT 2.4 FROM CLASH: THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE , 2013, 1310.3495.
[137] T. Kitching,et al. On the cross-section of dark matter using substructure infall into galaxy clusters , 2013, 1310.1731.
[138] S. Borgani,et al. Characterizing diffused stellar light in simulated galaxy clusters , 2013, 1310.1396.
[139] M. L. N. Ashby,et al. THE MOST LUMINOUS z ∼ 9–10 GALAXY CANDIDATES YET FOUND: THE LUMINOSITY FUNCTION, COSMIC STAR-FORMATION RATE, AND THE FIRST MASS DENSITY ESTIMATE AT 500 Myr , 2013, 1309.2280.
[140] F. Kahlhoefer,et al. Colliding clusters and dark matter self-interactions , 2013, 1308.3419.
[141] C. A. Oxborrow,et al. Planck 2015 results. I. Overview of products and scientific results , 2015 .
[142] R. Blandford,et al. Weighing the Giants - I. Weak-lensing masses for 51 massive galaxy clusters: project overview, data analysis methods and cluster images , 2012, 1208.0597.
[143] Laurens van der Maaten,et al. Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..
[144] David O. Jones,et al. THREE GRAVITATIONALLY LENSED SUPERNOVAE BEHIND CLASH GALAXY CLUSTERS , 2013, 1312.0943.
[145] J. Bock,et al. A MEASUREMENT OF THE KINETIC SUNYAEV–ZEL'DOVICH SIGNAL TOWARD MACS J0717.5+3745 , 2013, 1312.3680.
[146] O. Ilbert,et al. MULTI-WAVELENGTH SEDs OF HERSCHEL-SELECTED GALAXIES IN THE COSMOS FIELD , 2013, 1310.0474.
[147] T. Kitching,et al. Dark matter astrometry: accuracy of subhalo positions for the measurement of self-interaction cross-sections , 2013, 1305.2117.
[148] M. Franx,et al. THE HST EXTREME DEEP FIELD (XDF): COMBINING ALL ACS AND WFC3/IR DATA ON THE HUDF REGION INTO THE DEEPEST FIELD EVER , 2013, 1305.1931.
[149] K. Umetsu. MODEL-FREE MULTI-PROBE LENSING RECONSTRUCTION OF CLUSTER MASS PROFILES , 2013, 1302.0514.
[150] C. Conroy. Modeling the Panchromatic Spectral Energy Distributions of Galaxies , 2013, 1301.7095.
[151] Michele Cirasuolo,et al. THE 2012 HUBBLE ULTRA DEEP FIELD (UDF12): OBSERVATIONAL OVERVIEW , 2012, 1212.1448.
[152] R. Bouwens,et al. A REST-FRAME OPTICAL VIEW ON z ∼ 4 GALAXIES. I. COLOR AND AGE DISTRIBUTIONS FROM DEEP IRAC PHOTOMETRY OF THE IUDF10 AND GOODS SURVEYS , 2012, 1211.1010.
[153] Cambridge,et al. Why does the environmental influence on group and cluster galaxies extend beyond the virial radius , 2012, 1210.8407.
[154] Michele Cirasuolo,et al. THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5–12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1211.6804.
[155] R. Bouwens,et al. THE SPECTRAL ENERGY DISTRIBUTIONS OF z ∼ 8 GALAXIES FROM THE IRAC ULTRA DEEP FIELDS: EMISSION LINES, STELLAR MASSES, AND SPECIFIC STAR FORMATION RATES AT 650 MYR , 2012, 1209.3037.
[156] Johan Richard,et al. A weak lensing mass reconstruction of the large‐scale filament feeding the massive galaxy cluster MACS J0717.5+3745 , 2012, 1208.4323.
[157] J. Dunlop,et al. KECK SPECTROSCOPY OF 3 < z < 7 FAINT LYMAN BREAK GALAXIES: THE IMPORTANCE OF NEBULAR EMISSION IN UNDERSTANDING THE SPECIFIC STAR FORMATION RATE AND STELLAR MASS DENSITY , 2012, 1208.3529.
[158] Norbert Werner,et al. A filament of dark matter between two clusters of galaxies , 2012, Nature.
[159] W. Couch,et al. SHOCKING TAILS IN THE MAJOR MERGER ABELL 2744 , 2012, 1204.1052.
[160] Chien Y. Peng,et al. GALAPAGOS: From Pixels to Parameters , 2012, 1203.1831.
[161] S. Borgani,et al. Simulating the evolution of disc galaxies in a group environment – I. The influence of the global tidal field , 2012, 1202.0550.
[162] R. Cen,et al. Effects on galaxy evolution: pair interactions versus environment , 2011, 1111.0636.
[163] K. Dawson,et al. THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. VI. THE VOLUMETRIC TYPE Ia SUPERNOVA RATE , 2011, 1110.6442.
[164] R. Bouwens,et al. OVERDENSITIES OF Y-DROPOUT GALAXIES FROM THE BRIGHTEST-OF-REIONIZING GALAXIES SURVEY: A CANDIDATE PROTOCLUSTER AT REDSHIFT z ≈ 8 , 2011, 1110.0468.
[165] O. Lahav,et al. THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW , 2011, 1106.3328.
[166] S. Ravindranath,et al. CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.
[167] J. Rhodes,et al. Creation of cosmic structure in the complex galaxy cluster merger Abell 2744 , 2011, 1103.2772.
[168] Cameron K. McBride,et al. THE QUANTITY OF INTRACLUSTER LIGHT: COMPARING THEORETICAL AND OBSERVATIONAL MEASUREMENT TECHNIQUES USING SIMULATED CLUSTERS , 2011, 1103.1215.
[169] T. Kitching,et al. Cluster bulleticity: Cluster bulleticity , 2010, 1007.1924.
[170] H. Rix,et al. A COSMIC VARIANCE COOKBOOK , 2010, 1001.1737.
[171] J. W. MacKenty,et al. THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: DESIGN AND PRELIMINARY RESULTS , 2010, 1011.4075.
[172] R. Ellis,et al. Early star-forming galaxies and the reionization of the Universe , 2010, Nature.
[173] Z. Cai,et al. PROBING VERY BRIGHT END OF GALAXY LUMINOSITY FUNCTION AT z ≳ 7 USING HUBBLE SPACE TELESCOPE PURE PARALLEL OBSERVATIONS , 2010, 1010.2261.
[174] H. Shan,et al. NOISY WEAK-LENSING CONVERGENCE PEAK STATISTICS NEAR CLUSTERS OF GALAXIES AND BEYOND , 2010, 1006.5121.
[175] M. Oguri. The Mass Distribution of SDSS J1004$+$4112 Revisited , 2010, 1005.3103.
[176] Chien Y. Peng,et al. DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.
[177] J. Kneib,et al. LoCuSS: first results from strong-lensing analysis of 20 massive galaxy clusters at z= 0.2 , 2009, 0911.3302.
[178] Santiago,et al. Global environmental effects versus galaxy interactions , 2009, 0904.2851.
[179] P. Bekaert,et al. Non-parametric strong lens inversion of SDSS J1004+4112 , 2009, 0904.2382.
[180] D. Coe,et al. New Multiply-Lensed Galaxies Identified in ACS/NIC3 Observations of Cl0024+1654, Using an Improved Mass Model , 2009, 0902.3971.
[181] J. Kneib,et al. Multiscale cluster lens mass mapping - I. Strong lensing modelling , 2009, 0901.3792.
[182] Paolo Coppi,et al. EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.
[183] Edinburgh,et al. Revealing the Properties of Dark Matter in the Merging Cluster MACS J0025.4–1222 , 2008, 0806.2320.
[184] Geoffrey E. Hinton,et al. Visualizing Data using t-SNE , 2008 .
[185] J. Kneib,et al. A Bayesian approach to strong lensing modelling of galaxy clusters , 2007, 0706.0048.
[186] A. Cimatti,et al. Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.
[187] R. Wechsler,et al. The Hierarchical Build-Up of Massive Galaxies and the Intracluster Light since z = 1 , 2007, astro-ph/0703374.
[188] J. Bullock,et al. Shredded Galaxies as the Source of Diffuse Intrahalo Light on Varying Scales , 2007, astro-ph/0703004.
[189] Columbia,et al. Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.
[190] S. Borgani,et al. The importance of mergers for the origin of intracluster stars in cosmological simulations of galaxy clusters , 2007, astro-ph/0701925.
[191] D. Calzetti,et al. COSMOS: Hubble Space Telescope Observations , 2006, astro-ph/0612306.
[192] Max Tegmark,et al. Combined reconstruction of weak and strong lensing data with WSLAP , 2005, Monthly Notices of the Royal Astronomical Society.
[193] P. Hudelot,et al. Combining Strong and Weak Gravitational Lensing in Abell 1689 , 2006, astro-ph/0612165.
[194] C. Moss. Enhanced mergers of galaxies in low-redshift clusters , 2006, astro-ph/0608672.
[195] D. Clowe,et al. A Direct Empirical Proof of the Existence of Dark Matter , 2006, astro-ph/0608407.
[196] Tucson,et al. Strong and Weak Lensing United. III. Measuring the Mass Distribution of the Merging Galaxy Cluster 1ES 0657–558 , 2006, astro-ph/0608408.
[197] B. Garilli,et al. Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.
[198] H. Dejonghe,et al. A genetic algorithm for the non-parametric inversion of strong lensing systems , 2006, astro-ph/0601124.
[199] J. Peacock,et al. Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.
[200] T. Broadhurst,et al. The Surprisingly Steep Mass Profile of A1689, from a Lensing Analysis of Subaru Images , 2004, astro-ph/0412192.
[201] E. Wright,et al. The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.
[202] U. Florida,et al. Weak-Lensing Mass Reconstruction of the Interacting Cluster 1E 0657–558: Direct Evidence for the Existence of Dark Matter , 2003, astro-ph/0312273.
[203] G. Bruzual,et al. Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.
[204] S. M. Fall,et al. The Great Observatories Origins Deep Survey: Initial Results from Optical and Near-Infrared Imaging , 2003, astro-ph/0309105.
[205] Massimo Stiavelli,et al. The Hubble Ultra Deep Field , 2003, astro-ph/0607632.
[206] J. Kneib,et al. Constraints on the Collisional Nature of the Dark Matter from Gravitational Lensing in the Cluster A2218 , 2002, astro-ph/0207045.
[207] P. Gondoin,et al. XMM-Newton observatory. I. The spacecraft and operations , 2001 .
[208] J. Navarro,et al. The Origin of Star Formation Gradients in Rich Galaxy Clusters , 2000, astro-ph/0004078.
[209] Martin C. Weisskopf,et al. Chandra X-ray Observatory (CXO): overview , 1999, Astronomical Telescopes and Instrumentation.
[210] L. Moscardini,et al. Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North , 1999, astro-ph/9902290.
[211] M. Giavalisco,et al. A Counts-in-Cells Analysis Of Lyman-break Galaxies At Redshift z ~ 3 , 1998, astro-ph/9804236.
[212] D. Tucker,et al. The Influence of Environment on the Star Formation Rates of Galaxies , 1997, astro-ph/9712319.
[213] J. Bond,et al. How filaments of galaxies are woven into the cosmic web , 1995, Nature.
[214] G. Lake,et al. Galaxy harassment and the evolution of clusters of galaxies , 1995, Nature.
[215] J. E. Gunn,et al. Stellar spectrophotometric atlas, wavelengths from 3130 to 10800 A , 1983 .
[216] A. Dressler. Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .
[217] J. B. Oke. Absolute spectral energy distributions for white dwarfs , 1974 .
[218] J. Gunn,et al. On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .