Modeling the dynamics of magnetic semilevitation melting

In semilevitation melting, a cylindrical metal ingot is melted by a coaxial a.c. induction coil. A watercooled solid base supports the ingot, while the top and side free surface is confined by the magnetic forces as the melting front progresses. The dynamic interplay between gravity, hydrodynamic stress, and the Lorentz force in the fluid determines the instantaneous free surface shape. The coupled nonstationary equations for turbulent flow, heat with phase change, and high-frequency electromagnetic field are solved numerically for the axisymmetric time-dependent domain by a continuous mesh transformation, using a pseudospectral method. Results are obtained for the two actually existing coil configurations and several validation cases.

[1]  B. Li The magnetothermal phenomena in electromagnetic levitation processes , 1993 .

[2]  H. K. Moffatt,et al.  Fluid dynamical aspects of the levitation-melting process , 1982, Journal of Fluid Mechanics.

[3]  A. J. Mestel Magnetic levitation of liquid metals , 1982, Journal of Fluid Mechanics.

[4]  J. Evans,et al.  A mathematical model for the dynamic behavior of melts subjected to electromagnetic forces: Part I. model development and comparison of predictions with published experimental results , 1998 .

[5]  Ching-Jen Chen,et al.  Fundamentals of turbulence modeling , 1998 .

[6]  G. Temple Static and Dynamic Electricity , 1940, Nature.

[7]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[8]  H. Branover,et al.  Metallurgical Applications of Magnetohydrodynamics , 1993 .

[9]  Andrew Pollard,et al.  Heat transfer in separated and impinging turbulent flows , 1996 .

[10]  J. Brancher,et al.  Modelling of coupled phenomena in electromagnetic levitation , 1985 .

[11]  Michel Rappaz,et al.  Modeling of casting, welding and advanced solidification processes-V : proceedings of the fifth International Conference on Modeling of Casting and Welding Processes, held in Davos Switzerland, September 16-21, 1990 , 1991 .

[12]  S. H. Seyedein,et al.  A three-dimensional simulation of coupled turbulent flow and macroscopic solidification heat transfer for continuous slab casters , 1997 .

[13]  P. Durbin SEPARATED FLOW COMPUTATIONS WITH THE K-E-V2 MODEL , 1995 .

[14]  F. Fritsch,et al.  A Method for Constructing Local Monotone Piecewise Cubic Interpolants , 1984 .

[15]  A. Fukuzawa,et al.  Levitational melting of several kilograms of metal with a cold crucible , 1994 .

[16]  M. Cross,et al.  An enthalpy method for convection/diffusion phase change , 1987 .

[17]  B. Li,et al.  A Boundary/Finite Element Analysis of Magnetic Levitation Systems: Surface Deformation and Thermal Phenomena , 1998 .

[18]  T. Felici On the surface stability of liquid conductors in electromagnetic shaping , 1995, Journal of Fluid Mechanics.

[19]  J. Boyd Chebyshev & Fourier Spectral Methods , 1989 .

[20]  B. Li The transient magnetohydrodynamic phenomena in electromagnetic levitation processes , 1994 .

[21]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[22]  James F. Hoburg,et al.  Surface-coupled modeling of magnetically confined liquid metal in three-dimensional geometry , 1998 .

[23]  E. C. Okress,et al.  Electromagnetic Levitation of Solid and Molten Metals , 1952 .

[24]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[25]  C. Vivès,et al.  Steady flow of liquid aluminum in a rectangular-vertical ingot mold, thermally or electromagnetically activated , 1984 .

[26]  Wolfgang Rodi,et al.  Examples of calculation methods for flow and mixing in stratified fluids , 1987 .