Computational frequency-diverse microwave imaging using an air-filled cavity-backed antenna

We demonstrate a frequency-diverse imaging system using an air-filled cavity-backed antenna as a transceiver (cavity-to-cavity system layout) for the K-band (17.5–26.5 GHz) frequency regime. Leveraging the computational imaging concept, the frequency-diversity enables imaging in an all-electronic manner, without the need for mechanical raster scanning or active circuit components, minimizing the data acquisition time and simplifying the system architecture. It is shown that the proposed system is capable of reconstructing good fidelity images in a sub-second time frame, holding significant potential for real-time imaging applications.

[1]  Vivek K. Goyal,et al.  Photon-Efficient Computational 3-D and Reflectivity Imaging With Single-Photon Detectors , 2014, IEEE Transactions on Computational Imaging.

[2]  N. Nikolova Microwave Imaging for Breast Cancer , 2011, IEEE Microwave Magazine.

[3]  David R. Smith,et al.  Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures. , 2016, Optics express.

[4]  Okan Yurduseven,et al.  Indirect Microwave Holographic Imaging of Concealed Ordnance for Airport Security Imaging Systems , 2014 .

[5]  David R. Smith,et al.  Metamaterial apertures for coherent computational imaging on the physical layer. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  Oliver S Cossairt,et al.  Scaling law for computational imaging using spherical optics. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  Takuya Sakamoto,et al.  Single-Shot Compressive Multiple-Inputs Multiple-Outputs Radar Imaging Using a Two-Port Passive Device , 2016, IEEE Access.

[8]  Thomas E. Hall,et al.  Three-dimensional millimeter-wave imaging for concealed weapon detection , 2001 .

[9]  David R. Smith,et al.  Resolution of the Frequency Diverse Metamaterial Aperture Imager , 2015 .

[10]  David R. Smith,et al.  Unification of compressed imaging techniques in the microwave range and deconvolution strategy , 2015, 2015 European Radar Conference (EuRAD).

[11]  Tyler S. Ralston,et al.  Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system , 2010, 2010 IEEE International Symposium on Phased Array Systems and Technology.

[12]  David R. Smith,et al.  Spatially resolving antenna arrays using frequency diversity. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  David R. Smith,et al.  Multistatic microwave imaging with arrays of planar cavities , 2016 .

[14]  Daniel L Marks,et al.  Compressive holography. , 2009, Optics express.

[15]  David R. Smith,et al.  Metamaterial Apertures for Computational Imaging , 2013, Science.

[16]  Carey M. Rappaport,et al.  SAR IMAGING OF SUICIDE BOMBERS WEARING CONCEALED EXPLOSIVE THREATS , 2012 .

[17]  David R. Smith,et al.  Computational imaging using a mode-mixing cavity at microwave frequencies , 2015 .