Androgen-induced hypertension in angiotensinogen deficient mice: role of 20-HETE and EETS.

[1]  J. Falck,et al.  Epoxyeicosatrienoic acid analog attenuates angiotensin II hypertension and kidney injury , 2014, Front. Pharmacol..

[2]  Yan Ding,et al.  20-HETE induces remodeling of renal resistance arteries independent of blood pressure elevation in hypertension. , 2013, American journal of physiology. Renal physiology.

[3]  Yan Ding,et al.  Androgen-sensitive hypertension associates with upregulated vascular CYP4A12-20-HETE synthase. , 2013, Journal of the American Society of Nephrology : JASN.

[4]  S. Hwang,et al.  Antihypertensive action of soluble epoxide hydrolase inhibition in Ren‐2 transgenic rats is mediated by suppression of the intrarenal renin–angiotensin system , 2013, Clinical and experimental pharmacology & physiology.

[5]  J. Reckelhoff,et al.  Roles played by 20-HETE, angiotensin II and endothelin in mediating the hypertension in aging female spontaneously hypertensive rats. , 2013, American journal of physiology. Regulatory, integrative and comparative physiology.

[6]  Yan Ding,et al.  Induction of Angiotensin-Converting Enzyme and Activation of the Renin–Angiotensin System Contribute to 20-Hydroxyeicosatetraenoic Acid–Mediated Endothelial Dysfunction , 2012, Arteriosclerosis, thrombosis, and vascular biology.

[7]  S. Poloyac,et al.  Enalapril reverses high-fat diet-induced alterations in cytochrome P450-mediated eicosanoid metabolism. , 2012, American journal of physiology. Endocrinology and metabolism.

[8]  M. Schwartzman,et al.  The role of 20-HETE in androgen-mediated hypertension. , 2011, Prostaglandins & other lipid mediators.

[9]  J. McNeill,et al.  Testosterone-dependent increase in blood pressure is mediated by elevated Cyp4A expression in fructose-fed rats , 2011, Molecular and Cellular Biochemistry.

[10]  J. Falck,et al.  Androgen-Dependent Hypertension Is Mediated by 20-Hydroxy-5,8,11,14-Eicosatetraenoic Acid–Induced Vascular Dysfunction: Role of Inhibitor of &kgr;B Kinase , 2011, Hypertension.

[11]  N. Abraham,et al.  CYP4A2-Induced Hypertension Is 20-Hydroxyeicosatetraenoic Acid- and Angiotensin II-Dependent , 2010, Hypertension.

[12]  R. Roman,et al.  20-Hydroxyeicosatetraeonic Acid: A New Target for the Treatment of Hypertension , 2010, Journal of cardiovascular pharmacology.

[13]  J. Shyy,et al.  Linking an insect enzyme to hypertension: angiotensin II-epoxide hydrolase interactions. , 2010, Kidney international.

[14]  R. Rezzani,et al.  Endothelial-specific CYP4A2 overexpression leads to renal injury and hypertension via increased production of 20-HETE. , 2009, American journal of physiology. Renal physiology.

[15]  J. Falck,et al.  Elevated production of 20-HETE in the cerebral vasculature contributes to severity of ischemic stroke and oxidative stress in spontaneously hypertensive rats. , 2008, American journal of physiology. Heart and circulatory physiology.

[16]  T. Coffman,et al.  Targeting genes in the renin–angiotensin system , 2008, Current opinion in nephrology and hypertension.

[17]  V. Tesar,et al.  Effects of chronic cytochrome P-450 inhibition on the course of hypertension and end-organ damage in Ren-2 transgenic rats. , 2007, Vascular pharmacology.

[18]  M. Schwartzman,et al.  Vascular Cytochrome P450 4A Expression and 20-Hydroxyeicosatetraenoic Acid Synthesis Contribute to Endothelial Dysfunction in Androgen-Induced Hypertension , 2007, Hypertension.

[19]  Yi Fu,et al.  Angiotensin II up-regulates soluble epoxide hydrolase in vascular endothelium in vitro and in vivo , 2007, Proceedings of the National Academy of Sciences.

[20]  H. Hercule,et al.  Mouse Cyp4a isoforms: enzymatic properties, gender- and strain-specific expression, and role in renal 20-hydroxyeicosatetraenoic acid formation. , 2007, The Biochemical journal.

[21]  B. Flamion,et al.  Increased renal vascular reactivity to ANG II after unilateral nephrectomy in the rat involves 20-HETE. , 2006, American journal of physiology. Regulatory, integrative and comparative physiology.

[22]  J. Falck,et al.  Bradykinin‐induced, endothelium‐dependent responses in porcine coronary arteries: involvement of potassium channel activation and epoxyeicosatrienoic acids , 2005, British journal of pharmacology.

[23]  Chunxiang Zhang,et al.  Contribution of Arachidonic Acid Metabolites Derived Via Cytochrome P4504A to Angiotensin II–Induced Neointimal Growth , 2005, Hypertension.

[24]  R. Busse,et al.  Soluble Epoxide Hydrolase Is a Main Effector of Angiotensin II–Induced Hypertension , 2005, Hypertension.

[25]  M. Wellner,et al.  A peroxisome proliferator-activated receptor-alpha activator induces renal CYP2C23 activity and protects from angiotensin II-induced renal injury. , 2004, The American journal of pathology.

[26]  J. Falck,et al.  14,15-Epoxyeicosa-5(Z)-Enoic-mSI: A 14,15- and 5,6-EET Antagonist in Bovine Coronary Arteries , 2003, Hypertension.

[27]  D. Zeldin,et al.  Salt-Sensitive Hypertension After Exposure to Angiotensin Is Associated With Inability to Upregulate Renal Epoxygenases , 2003, Hypertension.

[28]  M. Waterman,et al.  Androgen-mediated induction of the kidney arachidonate hydroxylases is associated with the development of hypertension. , 2003, American journal of physiology. Regulatory, integrative and comparative physiology.

[29]  Eric F. Johnson,et al.  The CYP4A Isoforms Hydroxylate Epoxyeicosatrienoic Acids to Form High Affinity Peroxisome Proliferator-activated Receptor Ligands* , 2002, The Journal of Biological Chemistry.

[30]  F. Luft,et al.  P450-Dependent Arachidonic Acid Metabolism and Angiotensin II–Induced Renal Damage , 2002, Hypertension.

[31]  R. Roman,et al.  Role of 20-hydroxyeicosatetraenoic acid in the renal and vasoconstrictor actions of angiotensin II. , 2002, American journal of physiology. Regulatory, integrative and comparative physiology.

[32]  B. Hammock,et al.  Soluble Epoxide Hydrolase Inhibition Lowers Arterial Blood Pressure in Angiotensin II Hypertension , 2002, Hypertension.

[33]  Fan Zhang,et al.  Modulation by 20-HETE of Phenylephrine-Induced Mesenteric Artery Contraction in Spontaneously Hypertensive and Wistar-Kyoto Rats , 2001, Hypertension.

[34]  M. Waterman,et al.  Alterations in the regulation of androgen-sensitive Cyp 4a monooxygenases cause hypertension , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  D. Stec,et al.  Genetic Evidence That Lethality in Angiotensinogen-deficient Mice Is Due to Loss of Systemic but Not Renal Angiotensinogen* , 2001, The Journal of Biological Chemistry.

[36]  O. Ito,et al.  Effects of converting enzyme inhibitors on renal P-450 metabolism of arachidonic acid. , 2001, American journal of physiology. Regulatory, integrative and comparative physiology.

[37]  K. Malik,et al.  20-Hydroxyeicosatetraenoic Acid Mediates Angiotensin II–Induced Phospholipase D Activation in Vascular Smooth Muscle Cells , 2001, Hypertension.

[38]  K. Malik,et al.  Angiotensin II-Induced Hypertension: Contribution of Ras GTPase/Mitogen-Activated Protein Kinase and Cytochrome P450 Metabolites , 2000, Hypertension.

[39]  K. Croft,et al.  Angiotensin II releases 20-HETE from rat renal microvessels. , 2000, American journal of physiology. Renal physiology.

[40]  C. Sigmund,et al.  Understanding hypertension through genetic manipulation in mice. , 2000, Kidney international.

[41]  H. S. Kim,et al.  Complementation of reduced survival, hypotension, and renal abnormalities in angiotensinogen-deficient mice by the human renin and human angiotensinogen genes. , 1997, The Journal of clinical investigation.

[42]  H. S. Kim,et al.  Genetic control of blood pressure and the angiotensinogen locus. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[43]  A. Fukamizu,et al.  Angiotensinogen-deficient mice with hypotension. , 1994, The Journal of biological chemistry.

[44]  S. Oparil,et al.  Androgen-dependent angiotensinogen and renin messenger RNA expression in hypertensive rats. , 1992, Hypertension.

[45]  J. Ingelfinger,et al.  Androgen regulation of rat renal angiotensinogen messenger RNA expression. , 1989, The Journal of clinical investigation.

[46]  John D Imig,et al.  Epoxides and soluble epoxide hydrolase in cardiovascular physiology. , 2012, Physiological reviews.

[47]  R. Skidgel,et al.  The broad substrate specificity of human angiotensin I converting enzyme. , 1987, Clinical and experimental hypertension. Part A, Theory and practice.