Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia.

To define prognostic factors in infant acute lymphoblastic leukemia (ALL), the outcome of 106 infants (age </=12 months) during 3 consecutive multicenter trials of the Berlin-Frankfurt-Münster group (ALL-BFM 83, 86, and 90) was retrospectively analyzed according to presenting features and early in vivo response to prednisone. The prednisone response was defined as the cytoreduction (number of blood blasts per microliter at day 8) to a 7-day prednisone prephase and 1 intrathecal dose of methotrexate on day 1. Prednisone good responder (PGR; <1,000 blasts/microL) received conventional therapy and prednisone poor responder (PPR; >/=1,000 blasts/microL) received intensified therapy. Infant ALL was characterized by a high incidence of a white blood cell count greater than 100 x 10(3)/microL (57%), central nervous system leukemia (24%), lack of CD10 expression (59%), 11q23 rearrangement (49%) including the translocation t(4;11) (29%), and a comparatively high proportion of PPR (26%), which were all significantly associated with inferior outcome by univariate analysis. The estimated probability for an event-free survival at 6 years (pEFS) was by far better for PGR compared with PPR, who had a dismal prognosis despite intensified treatment (pEFS, 53% +/- 6% v 15% +/- 7%, P =.0001). Infant PGR, who were less than 6 months of age (n = 40), lacked CD10 expression (n = 43), and/or had an 11q23 rearrangement (n = 17) fared significantly better compared with corresponding PPR, as indicated by a pEFS of 44% +/- 8%, 49% +/- 8%, and 41% +/- 12%, respectively. In multivariate analysis, PPR was the strongest adverse prognostic factor (relative risk, 3.3; 95% confidence interval, 1.9 to 5.8; P <.0001). Infants with PGR, comprising a major subgroup (74%) among infants, might successfully be treated with conventional therapy, whereas PPR require new therapeutic strategies, including early treatment intensification or bone marrow transplantation in first remission.

[1]  D. Cox Regression Models and Life-Tables , 1972 .

[2]  J. Ritter,et al.  Die Corticosteroid-abhängige Dezimierung der Leukämiezellzahl im Blut als Prognosefaktor bei der akuten lymphoblastischen Leukämie im Kindesalter (Therapiestudie ALL-BFM 83) , 1987 .

[3]  W. Hiddemann,et al.  Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86. , 1994, Blood.

[4]  M. Greaves,et al.  Rapid intraclonal switch of lineage dominance in congenital leukaemia with a MLL gene rearrangement. , 1995, Leukemia.

[5]  M. Schrappe,et al.  Cytoreduction and prognosis in childhood acute lymphoblastic leukemia. , 1996, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[6]  E L Kaplan NON-PARAMETRIC ESTIMATION FROM INCOMPLETE OBSERVATION , 1958 .

[7]  E. Thiel,et al.  Immunophenotypic and genotypic features, clinical characteristics, and treatment outcome of adult pro-B acute lymphoblastic leukemia: results of the German multicenter trials GMALL 03/87 and 04/89. , 1998, Blood.

[8]  J. Harbott,et al.  [Concept and interim result of the ALL-BFM 90 therapy study in treatment of acute lymphoblastic leukemia in children and adolescents: the significance of initial therapy response in blood and bone marrow]. , 1994, Klinische Padiatrie.

[9]  H. Sather Age at diagnosis in childhood acute lymphoblastic leukemia. , 1986, Medical and pediatric oncology.

[10]  J. Downing,et al.  Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. , 1996, Blood.

[11]  S. Raimondi,et al.  Childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): an update [letter] , 1994 .

[12]  J. Harbott,et al.  Konzeption und Zwischenergebnis der Therapiestudie ALL-BFM 90 zur Behandlung der akuten lymphoblastischen Leukämie bei Kindern und Jugendlichen: Die Bedeutung des initialen Therapieansprechens in Blut und Knochenmark , 1994 .

[13]  F. Berthold,et al.  [Corticosteroid-dependent reduction of leukocyte count in blood as a prognostic factor in acute lymphoblastic leukemia in childhood (therapy study ALL-BFM 83)]. , 1987, Klinische Padiatrie.

[14]  A. Bleyer,et al.  Leukemic cell growth in SCID mice as a predictor of relapse in high-risk B-lineage acute lymphoblastic leukemia. , 1995, Blood.

[15]  N. Heerema,et al.  Cytogenetic features of infants less than 12 months of age at diagnosis of acute lymphoblastic leukemia: impact of the 11q23 breakpoint on outcome: a report of the Childrens Cancer Group. , 1994, Blood.

[16]  R. Foà,et al.  Unique genotypic features of infant acute lymphoblastic leukaemia at presentation and at relapse , 1992, British journal of haematology.

[17]  S. Korsmeyer,et al.  Molecular rearrangements on chromosome 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biologic variables and poor outcome. , 1993, Blood.

[18]  Y. Bertrand,et al.  Improved survival for acute lymphoblastic leukaemia in infancy: the experience of EORTC‐Childhood Leukaemia Cooperative Group , 1994, British journal of haematology.

[19]  F. Mandelli,et al.  Good steroid response in vivo predicts a favorable outcome in children with T‐cell acute lymphoblastic leukemia , 1995 .

[20]  M. Cleary,et al.  What significance should we attribute to the detection of MLL fusion transcripts? , 1998, Blood.

[21]  A. Hagemeijer,et al.  The translocations, t(11;19)(q23;p13.1) and t(11;19)(q23;p13.3): a cytogenetic and clinical profile of 53 patients , 1998, Leukemia.

[22]  F Lampert,et al.  Philadelphia chromosome-positive (Ph+) childhood acute lymphoblastic leukemia: good initial steroid response allows early prediction of a favorable treatment outcome. , 1998, Blood.

[23]  C. Pui,et al.  Acute lymphoblastic leukemia. , 1998, The New England journal of medicine.

[24]  R. Pieters,et al.  Clinical and cell biological features related to cellular drug resistance of childhood acute lymphoblastic leukemia cells. , 1995, Leukemia & lymphoma.

[25]  M. Greaves,et al.  Discordant clinical presentation and outcome in infant twins sharing a common clonal leukaemia , 1996, British journal of haematology.

[26]  H. Sather,et al.  Cytoreduction and prognosis in acute lymphoblastic leukemia--the importance of early marrow response: report from the Childrens Cancer Group. , 1996, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[27]  P. Ganly,et al.  Infant acute lymphoblastic leukaemia with t(11;19) , 1990, British journal of haematology.

[28]  N. Heerema,et al.  Molecular analysis of infant acute lymphoblastic leukemia: MLL gene rearrangement and reverse transcriptase-polymerase chain reaction for t(4; 11)(q21; q23). , 1995, Blood.

[29]  A. Schulz,et al.  Pre-pre-B acute lymphoblastic leukemia: high frequency of alternatively spliced ALL1-AF4 transcripts and absence of minimal residual disease during complete remission. , 1994, Blood.

[30]  F. Behm,et al.  Prognostic factors in the acute lymphoid and myeloid leukemias of infants. , 1996, Leukemia.

[31]  J. Harbott,et al.  Phenotypic and genotypic heterogeneity in infant acute leukemia. II. Acute nonlymphoblastic leukemia. , 1989, Leukemia.

[32]  M. Greaves Infant leukaemia biology, aetiology and treatment. , 1996, Leukemia.

[33]  L. Frankel,et al.  Clinical and biologic features predict a poor prognosis in acute lymphoid leukemias in infants: a Pediatric Oncology Group Study. , 1986, Blood.

[34]  J. Harbott,et al.  Phenotypic and genotypic heterogeneity in infant acute leukemia. I. Acute lymphoblastic leukemia. , 1989, Leukemia.

[35]  R. Mulhern,et al.  Long-term survivors of leukemia treated in infancy: factors associated with neuropsychologic status. , 1992, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[36]  T. Barbui,et al.  Detection of ALL-1/AF4 fusion transcript by reverse transcription-polymerase chain reaction for diagnosis and monitoring of acute leukemias with the t(4;11) translocation. , 1993, Blood.

[37]  M. Boiron,et al.  Combination therapy in 130 patients with acute lymphoblastic leukemia (protocol 06 LA 66-Paris). , 1973, Cancer research.

[38]  D. Campana,et al.  Comparative cytotoxicity of dexamethasone and prednisolone in childhood acute lymphoblastic leukemia. , 1996, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[39]  G. Henze,et al.  Abschätzung der Tumorzellmasse bei der akuten lymphoblastischen Leukämie im Kindesalter: prognostische Bedeutung und praktische Anwendung* , 1982 .

[40]  J. Harbott,et al.  Clinical significance of cytogenetic studies in childhood acute lymphoblastic leukemia: experience of the BFM trials. , 1993, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer.

[41]  F. Lo Coco,et al.  Prognostic relevance of ALL-1 gene rearrangement in infant acute leukemias. , 1995, Leukemia.

[42]  C. Pui,et al.  Biology and Clinical Significance of Cytogenetic Abnormalities in Childhood Acute Lymphoblastic Leukemia , 1990 .

[43]  J. Shuster,et al.  Intensive Alternating Drug Pairs After Remission Induction for Treatment of Infants With Acute Lymphoblastic Leukemia: A Pediatric Oncology Group Pilot Study , 1998, Journal of pediatric hematology/oncology.

[44]  G. Basso,et al.  The immunophenotype in infant acute lymphoblastic leukaemia: correlation with clinical outcome. An Italian multicentre study (AIEOP) , 1992, British journal of haematology.

[45]  J. V. van Dongen,et al.  Intensified therapy for infants with acute lymphoblastic leukemia , 1998 .

[46]  J. Rowley,et al.  Clonal, nonconstitutional rearrangements of the MLL gene in infant twins with acute lymphoblastic leukemia: in utero chromosome rearrangement of 11q23. , 1994, Blood.

[47]  J. Downing,et al.  The der(11)-encoded MLL/AF-4 fusion transcript is consistently detected in t(4;11)(q21;q23)-containing acute lymphoblastic leukemia. , 1994, Blood.

[48]  G. Reaman,et al.  Acute lymphoblastic leukemia in infants: evidence for B cell origin of disease by use of monoclonal antibody phenotyping. , 1986, Blood.

[49]  D. Pinkel Selecting treatment for children with acute lymphoblastic leukemia. , 1996, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[50]  D. Wang,et al.  Resistance of t(4;11) (MLL-AF4 fusion gene) leukemias to stress-induced cell death: possible mechanism for extensive extramedullary accumulation of cells and poor prognosis , 1998, Leukemia.

[51]  J. Downing,et al.  11q23/MLL rearrangement confers a poor prognosis in infants with acute lymphoblastic leukemia. , 1994, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[52]  Frequency and prognostic significance of HRX rearrangements in infant acute lymphoblastic leukemia: a Pediatric Oncology Group study. , 1994 .

[53]  S. Sallan,et al.  Acute lymphoblastic leukemia: Treatment , 1978, Cancer.

[54]  H. Sather,et al.  Early response to induction therapy as a predictor of disease-free survival and late recurrence of childhood acute lymphoblastic leukemia: a report from the Childrens Cancer Study Group. , 1989, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[55]  M. Siimes,et al.  Slow disappearance of peripheral blast cells: an independent risk factor indicating poor prognosis in children with acute lymphoblastic leukemia. , 1988, Blood.

[56]  F. Behm,et al.  Stroma-supported culture in childhood B-lineage acute lymphoblastic leukemia cells predicts treatment outcome. , 1996, The Journal of clinical investigation.

[57]  S. Richards,et al.  Acute lymphoblastic leukaemia in infancy: experience in MRC UKALL trials. Report from the Medical Research Council Working Party on Childhood Leukaemia. , 1994, Leukemia.

[58]  H. Sather,et al.  Day 7 marrow response and outcome for children with acute lymphoblastic leukemia and unfavorable presenting features. , 1990, Medical and pediatric oncology.

[59]  R. Pieters,et al.  Cellular drug resistance profiles that might explain the prognostic value of immunophenotype and age in childhood acute lymphoblastic leukemia. , 1993, Leukemia.

[60]  M. Seto,et al.  Frequency and clinical significance of the MLL gene rearrangements in infant acute leukemia. , 1996, Leukemia.

[61]  N. Heerema,et al.  Clinical significance of MLL-AF4 fusion transcript expression in the absence of a cytogenetically detectable t(4;11)(q21;q23) chromosomal translocation. , 1998, Blood.

[62]  E. Thiel,et al.  Frequency and Clinical Significance of DNA Aneuploidy in Acute Leukemia , 1986, Annals of the New York Academy of Sciences.

[63]  J. Huret,et al.  Cytogenetic heterogeneity in t(11;19) acute leukemia: clinical, hematological and cytogenetic analyses of 48 patients--updated published cases and 16 new observations. , 1993, Leukemia.

[64]  H. Sather,et al.  Improved survival of infants less than 1 year of age with acute lymphoblastic leukemia treated with intensive multiagent chemotherapy. , 1987, Cancer treatment reports.

[65]  R. Berger,et al.  Molecular basis of IIq23 rearrangements in hematopoietic malignant proliferations , 1995, Genes, chromosomes & cancer.

[66]  Intensified therapy for infants with acute lymphoblastic leukemia , 1997, Cancer.

[67]  C. Pui,et al.  Persistence of circulating blasts after 1 week of multiagent chemotherapy confers a poor prognosis in childhood acute lymphoblastic leukemia. , 1995, Blood.

[68]  J J Shuster,et al.  Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): a collaborative study of 40 cases. , 1991, Blood.