8 – Fatigue assessment methods for variable amplitude loading of welded structures

: Fatigue loading of most engineering structures involves variable amplitude stress cycles. This chapter starts by introducing alternate types of variable amplitude loading and methods for describing and simplifying load–time histories. Fatigue assessment methods for variable amplitude loading of welded structures based on S–N or crack propagation analysis are explained including the important features of load sequence effects and the influence of variable amplitude loading on small crack growth. Important issues to consider when planning, executing and reporting variable amplitude fatigue test results as well as hints on future trends and additional reading are also given.

[1]  R. Forman,et al.  Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures , 1967 .

[2]  Tim Topper,et al.  Derivation of crack closure and crack growth rate data from effective-strain fatigue life data for fracture mechanics fatigue life predictions , 1998 .

[3]  Ernst Gassner,et al.  Long life random fatigue behavior of notched specimens in service, in service duplication tests, and in program tests , 1979 .

[4]  T. Topper,et al.  Fatigue damage accumulation in 2024-T351 aluminium subjected to periodic reversed overloads , 1990 .

[5]  Tim Topper,et al.  The effect of compressive underloads and tensile overloads on fatigue damage accumulation in SAE 1045 steel , 1990 .

[6]  W. Elber The Significance of Fatigue Crack Closure , 1971 .

[7]  A. U. De Koning,et al.  A Simple Crack Closure Model for Prediction of Fatigue Crack Growth Rates Under Variable-Amplitude Loading , 1981 .

[8]  T. R. Gurney Cumulative Damage of Welded Joints , 2006 .

[9]  O. E. Wheeler Spectrum Loading and Crack Growth , 1972 .

[10]  Tim Topper,et al.  The effective stress range as a mean stress parameter , 1992 .

[11]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[12]  Tim Topper,et al.  Evaluation of small cycle omission criteria for shortening of fatigue service histories , 1979 .

[13]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[14]  J. Willenborg,et al.  A Crack Growth Retardation Model Using an Effective Stress Concept , 1971 .

[15]  G. Glinka,et al.  Elastic-plastic fatigue crack growth analysis under variable amplitude loading spectra , 2009 .

[16]  H. O. Fuchs,et al.  Metal fatigue in engineering , 2001 .

[17]  K. Walker The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum , 1970 .

[18]  G. Wang,et al.  A strip model for fatigue crack growth predictions under general load conditions , 1991 .

[19]  Ali Fatemi,et al.  Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials , 1998 .

[20]  E. Wolf Fatigue crack closure under cyclic tension , 1970 .

[21]  Jaap Schijve,et al.  Fatigue of structures and materials , 2001 .

[22]  Gary Marquis,et al.  LONG LIFE SPECTRUM FATIGUE OF CARBON AND STAINLESS STEEL WELDS , 1996 .

[23]  G. Glinka,et al.  A two parameter driving force for fatigue crack growth analysis , 2005 .

[24]  J. Newman A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading , 1981 .

[25]  S. J. Maddox,et al.  Fatigue strength of welded structures , 1991 .

[26]  Walter Schuetz The significance of service load data for fatigue life analysis , 1992 .

[27]  Cetin Morris Sonsino,et al.  Betriebsfestigkeit in Germany — an overview ☆ , 2002 .

[28]  W. D. Dover,et al.  Progress in the Development of a Wave Action Standard History (WASH) for Fatigue Testing Relevant to Tubular Structures in the North Sea , 1989 .

[29]  N. Dowling Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue , 1993 .

[30]  Colin MacDougall,et al.  The influence of variable amplitude loading on crack closure and notch fatigue behaviour , 1997 .

[31]  H. Führing,et al.  Structural Memory of Cracked Components Under Irregular Loading , 1979 .

[32]  Cetin Morris Sonsino,et al.  Effect of residual stresses on the fatigue behaviour of welded joints depending on loading conditions and weld geometry , 2009 .

[33]  T. Seeger,et al.  THE CONSEQUENCES OF SHORT CRACK CLOSURE ON FATIGUE CRACK GROWTH UNDER VARIABLE AMPLITUDE LOADING , 1991 .

[34]  Steve Lambert,et al.  A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force , 2007 .

[35]  W. D. Dover,et al.  VARIABLE AMPLITUDE FATIGUE OF WELDED STRUCTURES , 1979 .

[36]  A. Conle,et al.  Overstrain effects during variable amplitude service history testing , 1980 .

[37]  T. Dahle Long-life spectrum fatigue tests of welded joints , 1994 .

[38]  E. W. C. Wilkins,et al.  Cumulative damage in fatigue , 1956 .

[39]  K. Sadananda,et al.  Analysis of overload effects and related phenomena , 1999 .

[40]  D. Lal The combined effects of stress ratio and yield strength on the LEFM fatigue threshold condition , 1992 .

[41]  Ben T. Yen,et al.  Fatigue resistance of welded details enhanced by ultrasonic impact treatment (UIT) , 2003 .

[42]  J. Schijve,et al.  A standardized load sequence for flight simulation tests on transport aircraft wing structures , 1973 .

[43]  M. Horstmann,et al.  Effect of overload on fatigue crack retardation of aerospace Al-alloy laser welds using crack-tip plasticity analysis , 2009 .

[44]  Jakob Isakovich Kleiman,et al.  Rehabilitation and Repair of Welded Elements and Structures by Ultrasonic Peening , 2007 .

[45]  Tim Topper,et al.  The effect of overloads on threshold and crack closure , 1985 .

[46]  C. M. Sonsino,et al.  Fatigue testing under variable amplitude loading , 2007 .

[47]  Darrell F. Socie,et al.  Simple rainflow counting algorithms , 1982 .