On the Equivalence of Constrained and Compound Optimal Designs

O n the Equivalence o f C o n s t r a i n e d and C o m p o u n d O p t i m a l Designs Author(s): R. Dennis Cook and W e n g Kee W o n g Source: Journal of the American Statistical Association, V o l . 89, No. 426 (Tun., 1994), pp. 687¬ P u b l i s h e d b y : American Statistical Association Stable U R L : http://www.jstor.org/stable/2290872 Accessed: 2 3 / 0 5 / 2 0 1 1 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=astata. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. H1 American Statistical Association is collaborating with JSTOR to digitize, preserve and extend access to Journal of the American Statistical Association. m S T O R http://www.jstor.org

[1]  Christopher J. Nachtsheim,et al.  Model Robust, Linear-Optimal Designs , 1982 .

[2]  Anthony C. Atkinson,et al.  Recent Developments in the Methods of Optimum and Related Experimental Designs , 1988 .

[3]  Dankmar Böhing,et al.  On the construction of optimal experimental designs: a penalty approach , 1981 .

[4]  E. Läuter,et al.  Optimal multipurpose designs for regression models , 1976 .

[5]  Andrej Pázman,et al.  Foundations of Optimum Experimental Design , 1986 .

[6]  W. J. Hill,et al.  A Joint Design Criterion for the Dual Problem of Model Discrimination and Parameter Estimation , 1968 .

[7]  Carl Lee,et al.  Constrained optimal designs , 1988 .

[8]  E. Läuter Experimental design in a class of models , 1974 .

[9]  Guy Robin Sur un probleme d'optimisation en nombres entiers , 1980 .

[10]  H. Dette,et al.  A Generalization of $D$- and $D_1$-Optimal Designs in Polynomial Regression , 1990 .

[11]  B. N. Pshenichnyi Necessary Conditions for an Extremum , 1971 .

[12]  V. Fedorov,et al.  Convex design theory 1 , 1980 .

[13]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[14]  J. Kiefer General Equivalence Theory for Optimum Designs (Approximate Theory) , 1974 .

[15]  Carl Lee,et al.  Constrained optimal designs for regressiom models , 1987 .

[16]  Stephen M. Stigler,et al.  Optimal Experimental Design for Polynomial Regression , 1971 .

[17]  F. Pukelsheim Information increasing orderings in experimental design theory , 1987 .

[18]  W. J. Studden Some Robust-Type D-Optimal Designs in Polynomial Regression , 1982 .