Global urban localization based on road maps

This paper presents a method to perform localization in urban environments using segment-based maps together with particle filters. In the proposed approach, the likelihood function is generated as a grid, derived from segment-based maps. The scheme can efficiently assign weights to the particles in real time, with minimum memory requirements and without any additional pre-filtering procedure. Multi-hypotheses cases are handled transparently by the filter. A local history-based observation model is formulated as an extension to deal with 'out-of-map' navigation cases. This feature is highly desirable since the map can be incomplete, or the vehicle can be actually located outside the boundaries of the provided map. The system behaves like a 'virtual GPS', providing global localization in urban environments, without using an actual GPS. Experimental results show the performance of the proposed architecture in large scale urban environments using route network description (RNDF) segment-based maps.

[1]  Eduardo Mario Nebot,et al.  Optimization of the simultaneous localization and map-building algorithm for real-time implementation , 2001, IEEE Trans. Robotics Autom..

[2]  Henry A. Kautz,et al.  Voronoi tracking: location estimation using sparse and noisy sensor data , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[3]  Hugh F. Durrant-Whyte,et al.  Simultaneous map building and localization for an autonomous mobile robot , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[4]  Yoko NISHIMURA,et al.  Google Earth , 2008, Encyclopedia of GIS.

[5]  Frank Dellaert,et al.  Map-based priors for localization , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[6]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[7]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[8]  Maan El Badaoui El Najjar,et al.  A Road-Matching Method for Precise Vehicle Localization Using Belief Theory and Kalman Filtering , 2005, Auton. Robots.

[9]  Wolfram Burgard,et al.  Particle Filters for Mobile Robot Localization , 2001, Sequential Monte Carlo Methods in Practice.