Genetic variations in the gene encoding TFAP2B are associated with type 2 diabetes mellitus

[1]  Yusuke Nakamura,et al.  Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis , 2003, Nature Genetics.

[2]  M. McCarthy,et al.  Association and haplotype analysis of the insulin-degrading enzyme (IDE) gene, a strong positional and biological candidate for type 2 diabetes susceptibility. , 2003, Diabetes.

[3]  Yusuke Nakamura,et al.  Functional haplotypes of PADI 4 , encoding citrullinating enzyme peptidylarginine deiminase 4 , are associated with rheumatoid arthritis , 2003 .

[4]  Scott M. Williams,et al.  Genotyping of essential hypertension single-nucleotide polymorphisms by a homogeneous PCR method with universal energy transfer primers. , 2002, Clinical chemistry.

[5]  Hiroshi Sato,et al.  Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction , 2002, Nature Genetics.

[6]  Yusuke Nakamura,et al.  Gene-based SNP discovery as part of the Japanese Millennium Genome Project: identification of 190 562 genetic variations in the human genome , 2002, Journal of Human Genetics.

[7]  D. Clayton,et al.  A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. , 2002, American journal of human genetics.

[8]  Yusuke Nakamura,et al.  JSNP: a database of common gene variations in the Japanese population , 2002, Nucleic Acids Res..

[9]  J. Shaw,et al.  Global and societal implications of the diabetes epidemic , 2001, Nature.

[10]  M. Daly,et al.  High-resolution haplotype structure in the human genome , 2001, Nature Genetics.

[11]  G I Bell,et al.  Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. , 2001, The New England journal of medicine.

[12]  R Foxon,et al.  A genomewide scan for loci predisposing to type 2 diabetes in a U.K. population (the Diabetes UK Warren 2 Repository): analysis of 573 pedigrees provides independent replication of a susceptibility locus on chromosome 1q. , 2001, American journal of human genetics.

[13]  A. Sekine,et al.  Identification of 197 genetic variations in six human methyltransferase genes in the Japanese population , 2001, Journal of Human Genetics.

[14]  Yusuke Nakamura,et al.  A high-throughput SNP typing system for genome-wide association studies , 2001, Journal of Human Genetics.

[15]  Y. Ohnishi,et al.  Association between a single-nucleotide polymorphism in the promoter of the human interleukin-3 gene and rheumatoid arthritis in Japanese patients, and maximum-likelihood estimation of combinatorial effect that two genetic loci have on susceptibility to the disease. , 2001, American journal of human genetics.

[16]  A. Saltiel New Perspectives into the Molecular Pathogenesis and Treatment of Type 2 Diabetes , 2001, Cell.

[17]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[18]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[19]  Tom H. Lindner,et al.  Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus , 2000, Nature Genetics.

[20]  M. Daly,et al.  Guilt by association , 2000, Nature Genetics.

[21]  Yusuke Nakamura,et al.  Genomic structure and multiple single-nucleotide polymorphisms (SNPs) of the thiopurine S-methyltransferase (TPMT) gene , 2000, Journal of Human Genetics.

[22]  Eric S. Lander,et al.  The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes , 2000, Nature Genetics.

[23]  S. Kihara,et al.  Genomic structure and mutations in adipose-specific gene, adiponectin , 2000, International Journal of Obesity.

[24]  B. Gelb,et al.  Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus , 2000, Nature Genetics.

[25]  T. Funahashi,et al.  Molecular Mechanism of Metabolic Syndrome X: Contribution of Adipocytokines · Adipocyte‐derived Bioactive Substances , 1999, Annals of the New York Academy of Sciences.

[26]  J. Todd,et al.  The insulin gene VNTR, type 2 diabetes and birth weight , 1999, Nature Genetics.

[27]  B. Kahn Type 2 Diabetes: When Insulin Secretion Fails to Compensate for Insulin Resistance , 1998, Cell.

[28]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[29]  K. Zerres,et al.  Enhanced apoptotic cell death of renal epithelial cells in mice lacking transcription factor AP-2beta. , 1997, Genes & development.

[30]  B. Spiegelman,et al.  Adipogenesis and Obesity: Rounding Out the Big Picture , 1996, Cell.

[31]  L. Abraham,et al.  Identification of an AP‐2 element in the ‐323 to ‐285 region of the TNF‐α gene , 1996 .

[32]  L. Abraham,et al.  Identification of an AP-2 element in the -323 to -285 region of the TNF-alpha gene. , 1996, Biochemistry and molecular biology international.

[33]  K. Nakao,et al.  Structural Organization and Chromosomal Assignment of the Human obese Gene (*) , 1995, The Journal of Biological Chemistry.

[34]  R. Schüle,et al.  Cloning and characterization of a second AP-2 transcription factor: AP-2 beta. , 1995, Development.

[35]  L. Excoffier,et al.  Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. , 1995, Molecular biology and evolution.

[36]  R. Sakuta,et al.  A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. , 1994, The New England journal of medicine.