On the helix sense of gramicidin A single channels

In order to resolve whether gramicidin A channels are formed by right‐ or left‐handed β‐helices, we synthesized an optically reversed (or mirror image) analogue of gramicidin A, called gramicidin A−, to test whether it forms channels that have the same handedness as channels formed by gramicidin M− (F. Heitz et al., Biophys. J. 40:87–89, 1982). In gramicidin M− the four tryptophan residues have been replaced with phenylalanine, and the circular dichroism (CD) spectrum therfore reflects almost exclusively contributions from the polypeptide backbone. The CD spectrum of gramicidin M− in dimyristoylphosphatidylcholine vesicles is consistent with a left‐handed helical backbone folding motif (F. Heitz et al., Biophys. Chem. 24:149–160, 1986), and the CD spectra of gramicidins A and A− are essentially mirror images of each other. Based on hybrid channel experiments, gramicidin A− and M− channels are structurally equivalent, while gramicidin A and A− channels are nonequivalent, being of opposite helix sense. Gramicidin A− channels are therefore left‐handed, and natural gramicidin A channels in phospholipid bilayers are right‐handed β6.3‐helical dimers.

[1]  L. B. Weiss,et al.  Semisynthesis of linear gramicidins using diphenyl phosphorazidate (DPPA). , 2009, International journal of peptide and protein research.

[2]  O. Andersen,et al.  Gramicidin channels. , 2005, Annual review of physiology.

[3]  O. Andersen,et al.  Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association. , 1990, Science.

[4]  D. Sawyer,et al.  Gramicidins A, B, and C form structurally equivalent ion channels. , 1990, Biophysical journal.

[5]  O. Andersen,et al.  Distinction between dipolar and inductive effects in modulating the conductance of gramicidin channels. , 1990, Biochemistry.

[6]  O. Andersen,et al.  Energetics of gramicidin hybrid channel formation as a test for structural equivalence. Side-chain substitutions in the native sequence. , 1990, Journal of molecular biology.

[7]  L. Nicholson,et al.  Gramicidin cation channel: an experimental determination of the right-handed helix sense and verification of beta-type hydrogen bonding. , 1989, Biochemistry.

[8]  S. Scarlata The effects of viscosity on gramicidin tryptophan rotational motion. , 1988, Biophysical journal.

[9]  B. Wallace,et al.  The gramicidin pore: crystal structure of a cesium complex. , 1988, Science.

[10]  D. Langs,et al.  Three-dimensional structure at 0.86 A of the uncomplexed form of the transmembrane ion channel peptide gramicidin A. , 1988, Science.

[11]  C. Etchebest,et al.  Experimental and theoretical study of gramicidin P, an analog of gramicidin A with a methylamine C‐terminal , 1987, FEBS letters.

[12]  F. Heitz,et al.  Conformations of gramicidin A and its 9,11,13,15-phenylalanyl analog in dimethyl sulfoxide and chloroform. , 1986, Biophysical chemistry.

[13]  V. Naik,et al.  Vibrational analysis of the structure of gramicidin A. I. Normal mode analysis. , 1986, Biophysical journal.

[14]  V. Naik,et al.  Vibrational analysis of the structure of gramicidin A. II. Vibrational spectra. , 1986, Biophysical journal.

[15]  L. B. Weiss,et al.  Single-channel studies on linear gramicidins with altered amino acid side chains. Effects of altering the polarity of the side chain at position 1 in gramicidin A. , 1986, Biophysical journal.

[16]  E. Blout,et al.  Conformation of the gramicidin A channel in phospholipid vesicles: a fluorine-19 nuclear magnetic resonance study. , 1985, Biochemistry.

[17]  Y. Ovchinnikov,et al.  1H‐NMR study of gramicidin A transmembrane ion channel , 1985, FEBS letters.

[18]  R. Koeppe,et al.  Gramicidin K, a new linear channel-forming gramicidin from Bacillus brevis. , 1985, Biochemistry.

[19]  C. Etchebest,et al.  The gramicidin A channel: comparison of the energy profiles of Na+, K+ and Cs+ , 1984, FEBS letters.

[20]  C. Etchebest,et al.  The gramicidin A channel , 1984 .

[21]  R. Koeppe,et al.  Computer building of β‐helical polypeptide models , 1984 .

[22]  C. Venkatachalam,et al.  Theoretical conformational analysis of the Gramicidin a transmembrane channel. I. Helix sense and energetics of head‐to‐head dimerization , 1983 .

[23]  D. Urry,et al.  Is the Gramicidin A Transmembrane Channel Single-Stranded or Double-Stranded Helix? A Simple Unequivocal Determination , 1983, Science.

[24]  O. Andersen Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. , 1983, Biophysical journal.

[25]  F. Heitz,et al.  Single channels of 9, 11, 13, 15-destryptophyl-phenylalanyl-gramicidin A. , 1982, Biophysical journal.

[26]  E. Blout,et al.  Conformation of gramicidin A in phospholipid vesicles: circular dichroism studies of effects of ion binding, chemical modification, and lipid structure. , 1981, Biochemistry.

[27]  L. B. Weiss,et al.  Resolution of linear gramicidins by preparative reversed-phase high-performance liquid chromatography , 1981 .

[28]  B. Wallace,et al.  Conformation of the gramicidin A transmembrane channel: A 13C nuclear magnetic resonance study of 13C-enriched gramicidin in phosphatidylcholine vesicles. , 1980, Journal of molecular biology.

[29]  N. Nevskaya,et al.  The solution conformations of gramicidin A and its analogs , 1980 .

[30]  E. Blout,et al.  Conformation of gramicidin A channel in phospholipid vesicles: a 13C and 19F nuclear magnetic resonance study. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[31]  L. Stryer,et al.  Transmembrane channel activity of gramicidin A analogs: effects of modification and deletion of the amino-terminal residue. , 1979, Journal of molecular biology.

[32]  A. Spisni,et al.  Characterization of micellar-packaged gramicidin A channels. , 1979, Biochemical and biophysical research communications.

[33]  L. Stryer,et al.  The dimeric nature of the gramicidin A transmembrane channel: conductance and fluorescence energy transfer studies of hybrid channels. , 1977, Journal of molecular biology.

[34]  E. Bamberg,et al.  Structure of the gramicidin A channel: discrimination between the piL,D and the beta helix by electrical measurements with lipid bilayer membranes. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[35]  D. Urry,et al.  CONFORMATION AND MOLECULAR MECHANISMS OF CARRIERS AND CHANNELS fn1 , 1975, Annals of the New York Academy of Sciences.

[36]  S B Hladky,et al.  Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems , 1972, Quarterly Reviews of Biophysics.

[37]  D. Mayers,et al.  The gramicidin A transmembrane channel: characteristics of head-to-head dimerized (L,D) helices. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Urry Dw,et al.  The Gramicidin A Transmembrane Channel: A Proposed π(L,D) Helix , 1971 .

[39]  R. Woody Improved calculation of the n-pi rotational strength in polypeptides. , 1968, The Journal of chemical physics.

[40]  B. Witkop,et al.  GRAMICIDIN A. V. THE STRUCTURE OF VALINE- AND ISOLEUCINE-GRAMICIDIN A. , 1965, Journal of the American Chemical Society.

[41]  A. Arseniev,et al.  2 D NMR OF SINGLE AND DOUBLE STRANDED HELICES OF GRAMICIDIN A IN MICELLES AND SOLUTIONS , 2007 .

[42]  A. Arseniev,et al.  Diversity of the gramicidin a spatial structure: two-dimensional 1H nmr study in solution , 1988 .

[43]  O. Andersen,et al.  Do Amino Acid Substitutions Alter the Structure of Gramicidin Channels? Chemistry at the Single Molecule Level , 1988 .

[44]  B. Cornell,et al.  Conformation and orientation of gramicidin a in oriented phospholipid bilayers measured by solid state carbon-13 NMR. , 1988, Biophysical journal.

[45]  C. Etchebest,et al.  The Gramicidin a Channel: Left Versus Right-Handed Helix , 1988 .

[46]  Joshua Jortner,et al.  Transport Through Membranes: Carriers, Channels and Pumps , 1988 .

[47]  B. Wallace Structure of gramicidin A. , 1986, Biophysical journal.

[48]  E. Blout,et al.  Structural information from functional measurements: single-channel studies on gramicidin analogues. , 1986, Biophysical journal.

[49]  A. Kleinfeld,et al.  Transmembrane distribution of gramicidin by tryptophan energy transfer. , 1986, Biophysical journal.

[50]  O. Andersen,et al.  Single-channel studies on linear gramicidins with altered amino acid sequences. A comparison of phenylalanine, tryptophane, and tyrosine substitutions at positions 1 and 11. , 1984, Biophysical journal.

[51]  M S Doscher,et al.  Solid-phase peptide synthesis. , 1977, Methods in enzymology.