Adaptation of Pseudomonas helmanticensis to fat hydrolysates and SDS: fatty acid response and aggregate formation

[1]  Olesya G. Shpironok,et al.  Soil Sds-Degrading Bacterium Pseudomonas Helmanticensis as a Potential Producer of Polyhydroxyalkanoates , 2021, XIX International Scientific and Practical Conference "Current Trends of Agricultural Industry in Global Economy".

[2]  C. Wittmann,et al.  Microbial production of polyunsaturated fatty acids - high-value ingredients for aquafeed, superfoods, and pharmaceuticals. , 2021, Current opinion in biotechnology.

[3]  A. Jana,et al.  Utilization of waste frying oil for rhamnolipid production by indigenous Pseudomonas aeruginosa: Improvement through co-substrate optimization , 2020 .

[4]  Kumar Ganesan,et al.  Deep frying cooking oils promote the high risk of metastases in the breast-A critical review. , 2020, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[5]  M. Yildirim‐Aksoy,et al.  Use of dietary frass from black soldier fly larvae, Hermetia illucens, in hybrid tilapia (Nile x Mozambique, Oreocromis niloticus x O. mozambique) diets improves growth and resistance to bacterial diseases , 2020 .

[6]  Shangde Sun,et al.  Conversion of waste frying palm oil into biodiesel using free lipase A from Candida antarctica as a novel catalyst , 2020 .

[7]  Yaqing Sun,et al.  Analysis of PAHs in oily systems using modified QuEChERS with EMR-Lipid clean-up followed by GC-QqQ-MS , 2020 .

[8]  D. Kucera,et al.  Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains. , 2019, Bioresource technology.

[9]  M. Abduh,et al.  Production of protein hydrolysate containing antioxidant activity from Hermetia illucens , 2019, Heliyon.

[10]  Jinwon Lee,et al.  Intracellular transformation rates of fatty acids are influenced by expression of the fatty acid transporter FadL in Escherichia coli cell membrane. , 2018, Journal of biotechnology.

[11]  Y. Bukin,et al.  Fatty acid trophic markers in Lake Baikal phytoplankton: A comparison of endemic and cosmopolitan diatom-dominated phytoplankton assemblages , 2018 .

[12]  K. G. Sneha,et al.  A comparative study of coastal and clinical isolates of Pseudomonas aeruginosa , 2015, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[13]  M. Jisha,et al.  Metabolic profile of sodium dodecyl sulphate (SDS) biodegradation by Pseudomonas aeruginosa (MTCC 10311). , 2014, Journal of environmental biology.

[14]  A. Hassen,et al.  Changes in Membrane Fatty Acid Composition of Pseudomonas aeruginosa in Response to UV-C Radiations , 2013, Current Microbiology.

[15]  C. Wittmann,et al.  Industrial biotechnology of Pseudomonas putida and related species , 2012, Applied Microbiology and Biotechnology.

[16]  Peifang Wang,et al.  Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1. , 2010, Bioresource technology.

[17]  R. Geffers,et al.  SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in Pseudomonas aeruginosa. , 2009, Environmental microbiology.

[18]  S. Pavlou,et al.  Growth kinetics of Pseudomonas fluorescens in sand beds during biodegradation of phenol , 2006 .

[19]  A. D. Syakti,et al.  Influence of growth phase on the phospholipidic fatty acid composition of two marine bacterial strains in pure and mixed cultures. , 2006, Research in microbiology.

[20]  B. Schink,et al.  Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate , 2006, Archives of Microbiology.

[21]  A. Mrozik,et al.  Changes in fatty acid composition in Pseudomonas putida and Pseudomonas stutzeri during naphthalene degradation. , 2005, Microbiological research.

[22]  A. Mrozik,et al.  Changes in whole cell-derived fatty acids induced by naphthalene in bacteria from genus Pseudomonas. , 2004, Microbiological research.

[23]  H. Heipieper,et al.  The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. , 2003, FEMS microbiology letters.

[24]  J. Shanklin,et al.  Evidence linking the Pseudomonas oleovorans alkane ω‐hydroxylase, an integral membrane diiron enzyme, and the fatty acid desaturase family , 2003, FEBS letters.

[25]  Jae-Woo Park,et al.  Solubilization of PAH mixtures by three different anionic surfactants. , 2002, Environmental pollution.

[26]  J. Shim,et al.  Changes in Membrane Fluidity and Fatty Acid Composition of Pseudomonas putida CN-T19 in Response to Toluene , 2002, Bioscience, biotechnology, and biochemistry.

[27]  F. Dubois-Brissonnet,et al.  Quaternary ammonium compound stresses induce specific variations in fatty acid composition of Pseudomonas aeruginosa. , 2000, International journal of food microbiology.

[28]  C. Malgrange,et al.  Effect of temperature and physiological state on the fatty acid composition of Pseudomonas aeruginosa. , 2000, International journal of food microbiology.

[29]  J. Ramos,et al.  Involvement of the cis/trans Isomerase Cti in Solvent Resistance of Pseudomonas putidaDOT-T1E , 1999, Journal of bacteriology.

[30]  Y. L. Dréau,et al.  Changes in fatty acids of Pseudomonas nautica, a marine denitrifying bacterium, in response to n-eicosane as carbon source and various culture conditions , 1999 .

[31]  D. White,et al.  Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains , 1997, Journal of bacteriology.

[32]  C. Schleissner,et al.  Octanoic acid uptake in Pseudomonas putida U , 1997 .

[33]  P. Phibbs,et al.  Catabolite repression control in the Pseudomonads. , 1996, Research in microbiology.

[34]  J. D. de Bont,et al.  Cis/trans isomerization of fatty acids as a defence mechanism of Pseudomonas putida strains to toxic concentrations of toluene. , 1994, Microbiology.

[35]  M S Li Shuguang,et al.  Analysis of polycyclic aromatic hydrocarbons in cooking oil fumes. , 1994, Archives of environmental health.

[36]  S. Li,et al.  Analysis of polycyclic aromatic hydrocarbons in cooking oil fumes. , 1994, Archives of environmental health.

[37]  J. Janse,et al.  Classification of fluorescent soft rot Pseudomonas bacteria, including P. marginalis strains, using whole cell fatty acid analysis. , 1992 .

[38]  H. Heipieper,et al.  Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity , 1992, Applied and environmental microbiology.

[39]  H. Nyberg The influence of ionic detergents on the phospholipid fatty acid compositions of Porphyridium purpureum , 1985 .

[40]  J. Fitzgerald,et al.  Physiological control of alkylsulfatase synthesis in Pseudomonas aeruginosa: effects of glucose, glucose analogs, and sulfur. , 1977, Canadian journal of microbiology.

[41]  K. Hayashi A rapid determination of sodium dodecyl sulfate with methylene blue. , 1975, Analytical biochemistry.

[42]  C. W. Moss,et al.  Cellular Fatty Acid Composition of Selected Pseudomonas Species , 1972 .

[43]  C. W. Moss,et al.  Cellular fatty acid composition of selected Pseudomonas species. , 1972, Applied microbiology.

[44]  W. O'Leary THE FATTY ACIDS OF BACTERIA , 1962 .

[45]  W. O'Leary,et al.  THE FATTY ACIDS OF BACTERIA , 1962, Bacteriological reviews.