A novel strategy for broadband and miniaturized EBG designs: hybrid MTL theory and PSO algorithm

Electromagnetic Bandgap (EBG) structures are increasingly utilized by a variety of microwave and optical devices as filters for unwanted signals. One such application is their incorporation in power distribution network (PDN) of electronic circuits where the EBG structure replaces one of the reference voltage planes thus forming a shielded EBG structure. The EBG induces a wide (on the order of few GHz) omni-directional stopband in the operating frequency range of the PDN which mitigates the so called simultaneous switching noise (SSN) on the power plane. The challenging aspect in designing an EBG for such applications is to achieve a wide stopband centered at low GHz frequencies while maintaining a reasonably small unit cell size and a low profile. Indeed, the dimensions of the unit cell of the EBG structure for low frequency designs can become relatively large with respect to the size of the host dielectric substrate. Therefore, availability of a systematic design approach that can provide a fast and accurate means of performance prediction to enable geometry tweaking and design optimization will be of critical importance in utilizing EBG structures in such applications.