Direct-contact evaporation in the homogeneous and heterogeneous bubbling regimes. Part II: dynamic simulation

Abstract Considering the bimodal feature of the bubble size distribution in the heterogeneous regime, a recently developed model for simulating direct-contact evaporators operating in the homogeneous regime was extended to the heterogeneous bubbling regime, enabling, thereby, the simulation of a direct-contact evaporator for any bubbling regime. The proposed model includes a correction factor for isothermal gas hold-up correlations to account for heat and mass transfer effects which arise in non-isothermal bubbling. The model predictions were shown to be in good agreement with literature experimental data for the air–water system, considering four different gas superficial velocities.

[1]  Paulo L.C. Lage,et al.  Simultaneous heat and mass transfer during the ascension of superheated bubbles , 2000 .

[2]  B. Bowonder,et al.  Studies in bubble formation - IV: bubble formation at porous discs , 1970 .

[3]  C. P. Ribeiro,et al.  Direct-contact evaporation in the homogeneous and heterogeneous bubbling regimes. Part I: experimental analysis , 2004 .

[4]  P. Wilkinson,et al.  Design parameters estimation for scale‐up of high‐pressure bubble columns , 1992 .

[5]  John F. Davidson,et al.  Bubble formation at an orifice in a viscous liquid , 1997 .

[6]  N. Zuber,et al.  Average volumetric concentration in two-phase flow systems , 1965 .

[7]  M. Iguchi,et al.  Heat Transfer between Bubbles and Molten Wood's Metal , 1995 .

[8]  M. Fialová,et al.  Duality of the gas-liquid flow regimes in bubble column reactors , 1997 .

[9]  P. Lage,et al.  Modeling and simulation of direct contact evaporators , 2001 .

[10]  S. Cho,et al.  Steam bubble formation at a submerged orifice in quiescent water , 1991 .

[11]  R. Krishna,et al.  Wall effects on the rise of single gas bubbles in liquids , 1999 .

[12]  A. Jeje,et al.  The temperature field near a nozzle and the dynamics of saturated steam bubbles in subcooled water at low steady vapor supply rates , 1988 .

[13]  Dynamic and thermal behavior of hot gas bubbles discharged into water , 1986 .

[14]  F. Kreith,et al.  Principles of heat transfer , 1962 .

[15]  Rajamani Krishna,et al.  A unified approach to the scale-up of gas—solid fluidized bed and gas—liquid bubble column reactors , 1994 .

[16]  R. Krishna,et al.  Hydrodynamics and mass transfer in bubble columns in operating in the churn-turbulent regime , 1981 .

[17]  R. Krishna,et al.  Flow regime transition in bubble columns , 1999 .

[18]  Rajamani Krishna,et al.  A MODEL FOR GAS HOLDUP IN BUBBLE COLUMNS INCORPORATING THE INFLUENCE OF GAS DENSITY ON FLOW REGIME TRANSITIONS , 1991 .

[19]  S. Saxena,et al.  Heat transfer and gas holdup in a two-phase bubble column: air-water system: review and new data , 1991 .

[20]  R. Collins,et al.  The effect of a containing cylindrical boundary on the velocity of a large gas bubble in a liquid , 1967, Journal of Fluid Mechanics.

[21]  P. Grassmann,et al.  Bestimmung von Wärme- und Stoffübergangszahlen zwischen Dampfblase und Flüssigkeit für Wasser gegen Wasserdampf sowie Wasser gegen Wasserdampf und Inertgas: Bestimmung von Wärme- und Stoffübergangszahlen zwischen Dampfblase und Flüssigkeit für Wasser gegen Wasserdampf sowie Wasser gegen Wasserdampf , 1962 .

[22]  M. Iguchi,et al.  Heat Transfer between Bubbles and Liquid during Cold Gas Injection , 1992 .

[23]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[24]  Paulo L.C. Lage,et al.  Heat and mass transfer modeling during the formation and ascension of superheated bubbles , 2000 .

[25]  Hans Behringer The flow of liquid-gas mixtures in vertical tubes , 1952 .

[26]  Liang-Shih Fan,et al.  Maximum stable bubble size and gas holdup in high-pressure slurry bubble columns , 1999 .

[27]  R. Clift,et al.  Bubbles, Drops, and Particles , 1978 .

[28]  D. G. Karamanev,et al.  Rise of gas bubbles in quiescent liquids , 1994 .

[29]  S. Komarov,et al.  Bubble Behavior and Heat Transfer in Preheated Gas Injection into Liquid Bath , 1998 .

[30]  Yatish T. Shah,et al.  Design parameters estimations for bubble column reactors , 1982 .

[31]  Rajamani Krishna,et al.  Rise velocity of a swarm of large gas bubbles in liquids , 1999 .

[32]  M. Moo-young,et al.  The continuous phase heat and mass transfer properties of dispersions , 1961 .

[33]  D. Scott,et al.  The role of gas phase momentum in determining gas holdup and hydrodynamic flow regimes in bubble column operations , 1994 .

[34]  Rajamani Krishna,et al.  Gas holdup and mass transfer in bubble column reactors operated at elevated pressure. , 1999 .

[35]  Paulo L.C. Lage,et al.  EXPERIMENTAL STUDY ON BUBBLE SIZE DISTRIBUTIONS IN A DIRECT-CONTACT EVAPORATOR , 2004 .

[36]  Robert I. Nigmatulin,et al.  Dynamics, heat and mass transfer of vapour-gas bubbles in a liquid , 1981 .