A survey of RDF stores & SPARQL engines for querying knowledge graphs

Recent years have seen the growing adoption of non-relational data models for representing diverse, incomplete data. Among these, the RDF graph-based data model has seen ever-broadening adoption, particularly on the Web. This adoption has prompted the standardization of the SPARQL query language for RDF, as well as the development of a variety of local and distributed engines for processing queries over RDF graphs. These engines implement a diverse range of specialized techniques for storage, indexing, and query processing. A number of benchmarks, based on both synthetic and real-world data, have also emerged to allow for contrasting the performance of different query engines, often at large scale. This survey paper draws together these developments, providing a comprehensive review of the techniques, engines and benchmarks for querying RDF knowledge graphs.

[1]  Gang Wu,et al.  System Π: A Native RDF Repository Based on the Hypergraph Representation for RDF Data Model , 2008, 2008 The Ninth International Conference on Web-Age Information Management.

[2]  Lei Zou,et al.  SQBC: An efficient subgraph matching method over large and dense graphs , 2014, Inf. Sci..

[3]  Eva Zangerle,et al.  SpiderStore: A Native Main Memory Approach for Graph Storage , 2011, Grundlagen von Datenbanken.

[4]  Bo Hu,et al.  HPRD: a high performance RDF database , 2007, Int. J. Parallel Emergent Distributed Syst..

[5]  Peter Sanders,et al.  Recent Advances in Graph Partitioning , 2013, Algorithm Engineering.

[6]  吴刚,et al.  System II: A Native RDF Repository Based on the Hypergraph Representation for RDF Data Model , 2009 .

[7]  Srikanta J. Bedathur,et al.  Sparqling kleene: fast property paths in RDF-3X , 2013, GRADES.

[8]  Volker Linnemann,et al.  Using an index of precomputed joins in order to speed up SPARQL processing , 2007, ICEIS.

[9]  Georg Lausen,et al.  PigSPARQL: mapping SPARQL to Pig Latin , 2011, SWIM '11.

[10]  Hong Gao,et al.  WISE: Workload-Aware Partitioning for RDF Systems , 2020 .

[11]  Ioana Manolescu,et al.  RDF in the clouds: a survey , 2014, The VLDB Journal.

[12]  Vassilis Christophides,et al.  RQL: a declarative query language for RDF , 2002, WWW.

[13]  Sumit Purohit,et al.  Semantic Property Graph for Scalable Knowledge Graph Analytics , 2020, 2021 IEEE International Conference on Big Data (Big Data).

[14]  Jens Lehmann,et al.  Let's build Bridges, not Walls: SPARQL Querying of TinkerPop Graph Databases with Sparql-Gremlin , 2020, 2020 IEEE 14th International Conference on Semantic Computing (ICSC).

[15]  Stanislav Barton,et al.  Designing Indexing Structure for Discovering Relationships in RDF Graphs , 2004, DATESO.

[16]  James Anderson,et al.  RDF Graph Stores as Convergent Datatypes , 2019, WWW.

[17]  Kenli Li,et al.  GSmart: An Efficient SPARQL Query Engine Using Sparse Matrix Algebra - Full Version , 2021, ArXiv.

[18]  James A. Hendler,et al.  BitMat: A Main-memory Bit Matrix of RDF Triples for Conjunctive Triple Pattern Queries , 2008, SEMWEB.

[19]  Adina Crainiceanu,et al.  Rya: a scalable RDF triple store for the clouds , 2012, Cloud-I '12.

[20]  Georg Lausen,et al.  SP^2Bench: A SPARQL Performance Benchmark , 2008, 2009 IEEE 25th International Conference on Data Engineering.

[21]  Jens Lehmann,et al.  Iguana: A Generic Framework for Benchmarking the Read-Write Performance of Triple Stores , 2017, SEMWEB.

[22]  Xiaoyong Du,et al.  Efficient SPARQL Query Evaluation in a Database Cluster , 2013, 2013 IEEE International Congress on Big Data.

[23]  Maribel Acosta,et al.  SMJoin: A Multi-way Join Operator for SPARQL Queries , 2017, SEMANTiCS.

[24]  Georg Lausen,et al.  S2RDF: RDF Querying with SPARQL on Spark , 2015, Proc. VLDB Endow..

[25]  Gonzalo Navarro,et al.  Space/time-efficient RDF stores based on circular suffix sorting , 2020, ArXiv.

[26]  Jarek Gryz,et al.  Evaluation of SPARQL Property Paths via Recursive SQL , 2013, AMW.

[27]  Srikanta J. Bedathur,et al.  Efficiently Answering Regular Simple Path Queries on Large Labeled Networks , 2019, SIGMOD Conference.

[28]  Z. Meral Özsoyoglu,et al.  RBench: Application-Specific RDF Benchmarking , 2015, SIGMOD Conference.

[29]  Dongyan Zhao,et al.  Optimizing Multi-Query Evaluation in Federated RDF Systems , 2021, IEEE Transactions on Knowledge and Data Engineering.

[30]  Jeff Heflin,et al.  LUBM: A benchmark for OWL knowledge base systems , 2005, J. Web Semant..

[31]  Panos Kalnis,et al.  Accelerating SPARQL queries by exploiting hash-based locality and adaptive partitioning , 2016, The VLDB Journal.

[32]  Philippe Cudré-Mauroux,et al.  dipLODocus[RDF] - Short and Long-Tail RDF Analytics for Massive Webs of Data , 2011, SEMWEB.

[33]  Patricia G. Selinger,et al.  Access path selection in a relational database management system , 1979, SIGMOD '79.

[34]  Dimitrios Tsoumakos,et al.  Graph-Aware, Workload-Adaptive SPARQL Query Caching , 2015, SIGMOD Conference.

[35]  Abraham Bernstein,et al.  Signal/Collect: Graph Algorithms for the (Semantic) Web , 2010, SEMWEB.

[36]  Panos Kalnis,et al.  A Survey and Experimental Comparison of Distributed SPARQL Engines for Very Large RDF Data , 2017, Proc. VLDB Endow..

[37]  Diego Calvanese,et al.  Ontop: Answering SPARQL queries over relational databases , 2016, Semantic Web.

[38]  Hong Gao,et al.  Leon: A Distributed RDF Engine for Multi-query Processing , 2019, DASFAA.

[39]  Andy Seaborne,et al.  Clustered TDB: A Clustered Triple Store for Jena , 2008 .

[40]  Hyoung-Joo Kim,et al.  R3F: RDF triple filtering method for efficient SPARQL query processing , 2013, World Wide Web.

[41]  Zongmin Ma,et al.  Storing massive Resource Description Framework (RDF) data: a survey , 2016, The Knowledge Engineering Review.

[42]  Katja Hose,et al.  Efficient Continuous Multi-Query Processing over Graph Streams , 2019, EDBT.

[43]  Yavor Nenov,et al.  Dynamic Data Exchange in Distributed RDF Stores , 2018, IEEE Transactions on Knowledge and Data Engineering.

[44]  Guido Moerkotte,et al.  Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[45]  Gonzalo Navarro,et al.  Worst-Case Optimal Graph Joins in Almost No Space , 2021, SIGMOD Conference.

[46]  Feifei Li,et al.  Scalable Multi-query Optimization for SPARQL , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[47]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[48]  Peter F. Patel-Schneider,et al.  OWL 2 Web Ontology Language Primer (Second Edition) , 2012 .

[49]  Young-Koo Lee,et al.  Exploiting Path Indexes to Answer Complex Queries in Ontology Repository , 2009, 2009 International Conference on Computational Science and Its Applications.

[50]  Marcelo Arenas,et al.  Semantics and complexity of SPARQL , 2006, TODS.

[51]  Daniel J. Abadi,et al.  SW-Store: a vertically partitioned DBMS for Semantic Web data management , 2009, The VLDB Journal.

[52]  David F. Wood,et al.  Kowari: A Platform for Semantic Web Storage and Analysis , 2005, WWW 2005.

[53]  Gerhard Weikum,et al.  FERRARI: Flexible and efficient reachability range assignment for graph indexing , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[54]  Le Gruenwald,et al.  P-LUPOSDATE: Using Precomputed Bloom Filters to Speed Up SPARQL Processing in the Cloud , 2014, Open J. Semantic Web.

[55]  Dániel Varró,et al.  The Train Benchmark: cross-technology performance evaluation of continuous model queries , 2017, Software & Systems Modeling.

[56]  Xiaofei Wang,et al.  Distributed Pregel-based provenance-aware regular path query processing on RDF knowledge graphs , 2019, World Wide Web.

[57]  Jan Hidders,et al.  Storing and Indexing Massive RDF Datasets , 2012, Semantic Search over the Web.

[58]  Sungpack Hong,et al.  Taming Subgraph Isomorphism for RDF Query Processing , 2015, Proc. VLDB Endow..

[59]  Irena Holubová,et al.  Linked Data Indexing Methods: A Survey , 2011, OTM Workshops.

[60]  Aidan Hogan,et al.  In-Database Graph Analytics with Recursive SPARQL , 2020, SEMWEB.

[61]  Ioannis Konstantinou,et al.  H2RDF: adaptive query processing on RDF data in the cloud. , 2012, WWW.

[62]  Jan Hidders,et al.  A Structural Approach to Indexing Triples , 2012, ESWC.

[63]  Andreas Harth,et al.  Optimized index structures for querying RDF from the Web , 2005, Third Latin American Web Congress (LA-WEB'2005).

[64]  Aidan Hogan,et al.  A Worst-Case Optimal Join Algorithm for SPARQL , 2019, SEMWEB.

[65]  Uzay Kaymak,et al.  Ant colony optimization for RDF chain queries for decision support , 2013, Expert Syst. Appl..

[66]  M. Tamer Özsu,et al.  chameleon-db: a Workload-Aware Robust RDF Data Management System , 2013 .

[67]  Maria-Esther Vidal,et al.  To Cache or Not To Cache: The Effects of Warming Cache in Complex SPARQL Queries , 2011, OTM Conferences.

[68]  Uzay Kaymak,et al.  RCQ-GA: RDF Chain Query Optimization Using Genetic Algorithms , 2009, EC-Web.

[69]  Nikos Mamoulis,et al.  Extended Characteristic Sets: Graph Indexing for SPARQL Query Optimization , 2017, 2017 IEEE 33rd International Conference on Data Engineering (ICDE).

[70]  Barry Bishop,et al.  OWLIM: A family of scalable semantic repositories , 2011, Semantic Web.

[71]  Marcelo Arenas,et al.  Foundations of Modern Query Languages for Graph Databases , 2016, ACM Comput. Surv..

[72]  François Goasdoué,et al.  Summarizing semantic graphs: a survey , 2018, The VLDB Journal.

[73]  Georg Lausen,et al.  Sempala: Interactive SPARQL Query Processing on Hadoop , 2014, SEMWEB.

[74]  Raphael Volz,et al.  A Comparison of RDF Query Languages , 2004, SEMWEB.

[75]  M. Tamer Özsu,et al.  Diversified Stress Testing of RDF Data Management Systems , 2014, SEMWEB.

[76]  Hubert Naacke,et al.  On Distributed SPARQL Query Processing Using Triangles of RDF Triples , 2020, Open J. Semantic Web.

[77]  Dave J. Beckett,et al.  The design and implementation of the redland RDF application framework , 2001, WWW '01.

[78]  Min Wang,et al.  EAGRE: Towards scalable I/O efficient SPARQL query evaluation on the cloud , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[79]  Erik G. Hoel,et al.  Distributed Spatial and Spatio-Temporal Join on Apache Spark , 2019, ACM Trans. Spatial Algorithms Syst..

[80]  Lei Zou,et al.  gStore: Answering SPARQL Queries via Subgraph Matching , 2011, Proc. VLDB Endow..

[81]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[82]  Sherif Sakr,et al.  DREAM: Distributed RDF Engine with Adaptive Query Planner and Minimal Communication , 2015, Proc. VLDB Endow..

[83]  Walid G. Aref,et al.  WORQ: Workload-Driven RDF Query Processing , 2018, SEMWEB.

[84]  Samantha Bail,et al.  FishMark: A Linked Data Application Benchmark , 2012, SSWS+HPCSW@ISWC.

[85]  Georg Lausen,et al.  SP2Bench: A SPARQL Performance Benchmark , 2008, Semantic Web Information Management.

[86]  Haruo Yokota,et al.  JARS: Join-Aware Distributed RDF Storage , 2016, IDEAS.

[87]  Todd L. Veldhuizen,et al.  Leapfrog Triejoin: A Simple, Worst-Case Optimal Join Algorithm , 2012, 1210.0481.

[88]  Alexandra Poulovassilis,et al.  Efficient regular path query evaluation using path indexes , 2016, EDBT.

[89]  Tao Zhu,et al.  A survey of RDF management technologies and benchmark datasets , 2018, Journal of Ambient Intelligence and Humanized Computing.

[90]  Derya Birant,et al.  An ant colony optimisation approach for optimising SPARQL queries by reordering triple patterns , 2015, Inf. Syst..

[91]  Daniel J. Abadi,et al.  Scalable SPARQL querying of large RDF graphs , 2011, Proc. VLDB Endow..

[92]  Mariano P. Consens,et al.  Querying knowledge graphs with extended property paths , 2019, Semantic Web.

[93]  Ulf Leser,et al.  Regular Path Queries on Large Graphs , 2012, SSDBM.

[94]  Jesse Weaver,et al.  Enabling Fine-Grained HTTP Caching of SPARQL Query Results , 2011, SEMWEB.

[95]  Mohsen Kahani,et al.  An entity based RDF indexing schema using Hadoop and HBase , 2014, 2014 4th International Conference on Computer and Knowledge Engineering (ICCKE).

[96]  Heiner Stuckenschmidt,et al.  Similarity-Based Query Caching , 2004, FQAS.

[97]  Georg Lausen,et al.  S2X: Graph-Parallel Querying of RDF with GraphX , 2015, Big-O/DMAH@VLDB.

[98]  N. Shadbolt,et al.  4store: The Design and Implementation of a Clustered RDF Store , 2009 .

[99]  Bryan B. Thompson,et al.  The Bigdata® RDF Graph Database , 2014 .

[100]  Catherine Faron-Zucker,et al.  Implementation of SPARQL Query Language Based on Graph Homomorphism , 2007, ICCS.

[101]  Hai Jin,et al.  SemStore: A Semantic-Preserving Distributed RDF Triple Store , 2014, CIKM.

[102]  V. S. Subrahmanian,et al.  GRIN: A Graph Based RDF Index , 2007, AAAI.

[103]  Hala Skaf-Molli,et al.  SaGe: Web Preemption for Public SPARQL Query Services , 2019, WWW.

[104]  Catriel Beeri,et al.  On the power of magic , 1987, J. Log. Program..

[105]  Philippe Cudré-Mauroux,et al.  DiploCloud: Efficient and Scalable Management of RDF Data in the Cloud , 2016, IEEE Transactions on Knowledge and Data Engineering.

[106]  Julian Dolby,et al.  Building an efficient RDF store over a relational database , 2013, SIGMOD '13.

[107]  James A. Hendler,et al.  Matrix "Bit" loaded: a scalable lightweight join query processor for RDF data , 2010, WWW '10.

[108]  Steffen Staab,et al.  On data placement strategies in distributed RDF stores , 2017, SBD@SIGMOD.

[109]  Raffaele Perego,et al.  Compressed Indexes for Fast Search of Semantic Data , 2019, IEEE Transactions on Knowledge and Data Engineering.

[110]  Octavian Udrea,et al.  Apples and oranges: a comparison of RDF benchmarks and real RDF datasets , 2011, SIGMOD '11.

[111]  Sherif Sakr,et al.  Relational processing of RDF queries: a survey , 2010, SGMD.

[112]  James Anderson,et al.  Transaction-Time Queries in Dydra , 2016, MEPDaW/LDQ@ESWC.

[113]  Steffen Staab,et al.  Koral: A Glass Box Profiling System for Individual Components of Distributed RDF Stores , 2017, BLINK/NLIWoD3@ISWC.

[114]  Frank van Harmelen,et al.  Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema , 2002, SEMWEB.

[115]  Steffen Staab,et al.  Storing and Querying Semantic Data in the Cloud , 2018, Reasoning Web.

[116]  Bertram Ludäscher,et al.  On implementing provenance-aware regular path queries with relational query engines , 2013, EDBT '13.

[117]  Ronaldo dos Santos Mello,et al.  An analysis of mapping strategies for storing RDF data into NoSQL databases , 2020, SAC.

[118]  Felix Conrads,et al.  Tentris - A Tensor-Based Triple Store , 2020, SEMWEB.

[119]  Haibo Chen,et al.  Fast and Concurrent RDF Queries using RDMA-assisted GPU Graph Exploration , 2018, USENIX Annual Technical Conference.

[120]  Vasil Slavov,et al.  Fast Processing of SPARQL Queries on RDF Quadruples , 2016, J. Web Semant..

[121]  Krys J. Kochut,et al.  BRAHMS: A WorkBench RDF Store and High Performance Memory System for Semantic Association Discovery , 2005, SEMWEB.

[122]  Nils Gesbert,et al.  On the Optimization of Recursive Relational Queries: Application to Graph Queries , 2020, SIGMOD Conference.

[123]  Juan L. Reutter,et al.  Recursion in SPARQL , 2015, SEMWEB.

[124]  Michael Sintek,et al.  RDFBroker: A Signature-Based High-Performance RDF Store , 2006, ESWC.

[125]  Gianluca Demartini,et al.  BowlognaBench - Benchmarking RDF Analytics , 2011, SIMPDA.

[126]  Lei Chen,et al.  Adaptive Distributed RDF Graph Fragmentation and Allocation based on Query Workload , 2019, IEEE Transactions on Knowledge and Data Engineering.

[127]  Dave Reynolds,et al.  Efficient RDF Storage and Retrieval in Jena2 , 2003, SWDB.

[128]  Muhammad Saleem,et al.  An Empirical Evaluation of RDF Graph Partitioning Techniques , 2018, EKAW.

[129]  Eugene Wong,et al.  Query optimization by simulated annealing , 1987, SIGMOD '87.

[130]  Thomas Neumann,et al.  Path Query Processing on Very Large RDF Graphs , 2011, WebDB.

[131]  Christian Bizer,et al.  The Berlin SPARQL Benchmark , 2009, Int. J. Semantic Web Inf. Syst..

[132]  Jürgen Umbrich,et al.  SPARQL Web-Querying Infrastructure: Ready for Action? , 2013, SEMWEB.

[133]  Abraham Bernstein,et al.  Hexastore: sextuple indexing for semantic web data management , 2008, Proc. VLDB Endow..

[134]  Nieves R. Brisaboa,et al.  Revisiting Compact RDF Stores Based on k2-Trees , 2020, 2020 Data Compression Conference (DCC).

[135]  Muhammad Imran,et al.  Managing big RDF data in clouds: Challenges, opportunities, and solutions , 2018 .

[136]  Heiner Stuckenschmidt,et al.  Towards distributed processing of RDF path queries , 2005, Int. J. Web Eng. Technol..

[137]  Panos Kalnis,et al.  Matrix Algebra Framework for Portable, Scalable and Efficient Query Engines for RDF Graphs , 2019, EuroSys.

[138]  Daniel J. Abadi,et al.  Scalable Semantic Web Data Management Using Vertical Partitioning , 2007, VLDB.

[139]  Bo Zong,et al.  Towards effective partition management for large graphs , 2012, SIGMOD Conference.

[140]  Roberto De Virgilio,et al.  Path-oriented keyword search over graph-modeled Web data , 2012, World Wide Web.

[141]  Daniel Hladky,et al.  OntoQuad: Native High-Speed RDF DBMS for Semantic Web , 2013, KESW.

[142]  Muhammad Saleem,et al.  FEASIBLE: A Feature-Based SPARQL Benchmark Generation Framework , 2015, SEMWEB.

[143]  Dániel Marx,et al.  Size Bounds and Query Plans for Relational Joins , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[144]  Michael Martin,et al.  Improving the Performance of Semantic Web Applications with SPARQL Query Caching , 2010, ESWC.

[145]  Saskia Metzler,et al.  On Defining SPARQL with Boolean Tensor Algebra , 2015, ArXiv.

[146]  Hu Bo,et al.  HPRD: a high performance RDF database , 2007 .

[147]  Zahid Abul-Basher Multiple-Query Optimization of Regular Path Queries , 2017, 2017 IEEE 33rd International Conference on Data Engineering (ICDE).

[148]  Bradley R. Bebee,et al.  Amazon Neptune: Graph Data Management in the Cloud , 2018, International Semantic Web Conference.

[149]  Catherine Faron-Zucker,et al.  Querying the Semantic Web with Corese Search Engine , 2004, ECAI.

[150]  Bhavani M. Thuraisingham,et al.  Jena-HBase: A Distributed, Scalable and Effcient RDF Triple Store , 2012, SEMWEB.

[151]  Peter A. Boncz,et al.  Exploiting Emergent Schemas to Make RDF Systems More Efficient , 2016, SEMWEB.

[152]  Nicholas Gibbins,et al.  3store: Efficient Bulk RDF Storage , 2003, PSSS.

[153]  Abraham Bernstein,et al.  TripleRush: A Fast and Scalable Triple Store , 2013, SSWS@ISWC.

[154]  Martin Theobald,et al.  TriAD: a distributed shared-nothing RDF engine based on asynchronous message passing , 2014, SIGMOD Conference.

[155]  Axel-Cyrille Ngonga Ngomo,et al.  LargeRDFBench: A billion triples benchmark for SPARQL endpoint federation , 2018, J. Web Semant..

[156]  Nicolas Spyratos,et al.  Towards Interactive Analytics over RDF Graphs , 2021, Algorithms.

[157]  François Goasdoué,et al.  CliqueSquare: Flat plans for massively parallel RDF queries , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[158]  Wim Martens,et al.  Evaluation and Enumeration Problems for Regular Path Queries , 2018, ICDT.

[159]  Guillaume Blin,et al.  A survey of RDF storage approaches , 2012, ARIMA J..

[160]  Michael Färber,et al.  PRoST: Distributed Execution of SPARQL Queries Using Mixed Partitioning Strategies , 2018, EDBT.

[161]  Ioannis Konstantinou,et al.  H2RDF+: High-performance distributed joins over large-scale RDF graphs , 2013, 2013 IEEE International Conference on Big Data.

[162]  Michael Schmidt,et al.  Foundations of SPARQL query optimization , 2008, ICDT '10.

[163]  Manolis Koubarakis,et al.  Strabon: A Semantic Geospatial DBMS , 2012, SEMWEB.

[164]  Martin J. Dürst,et al.  Internationalized Resource Identifiers (IRIs) , 2005, RFC.

[165]  Kyungbaek Kim,et al.  Efficient Regular Path Query Evaluation by Splitting with Unit-Subquery Cost Matrix , 2017, IEICE Trans. Inf. Syst..

[166]  Günter Ladwig,et al.  FedBench: A Benchmark Suite for Federated Semantic Data Query Processing , 2011, SEMWEB.

[167]  Katja Hose,et al.  WARP: Workload-aware replication and partitioning for RDF , 2013, 2013 IEEE 29th International Conference on Data Engineering Workshops (ICDEW).

[168]  Chantana Chantrapornchai,et al.  TripleID-Q: RDF Query Processing Framework Using GPU , 2018, IEEE Transactions on Parallel and Distributed Systems.

[169]  Volker Linnemann,et al.  LuposDate: a semantic web database system , 2009, CIKM.

[170]  Markus Krötzsch,et al.  Getting the Most Out of Wikidata: Semantic Technology Usage in Wikipedia's Knowledge Graph , 2018, SEMWEB.

[171]  Atanas Kiryakov,et al.  OWLIM - A Pragmatic Semantic Repository for OWL , 2005, WISE Workshops.

[172]  Quan Z. Sheng,et al.  Identifying and Caching Hot Triples for Efficient RDF Query Processing , 2015, DASFAA.

[173]  M. Tamer Özsu A survey of RDF data management systems , 2016, Frontiers of Computer Science.

[174]  Panos Kalnis,et al.  Combining Vertex-Centric Graph Processing with SPARQL for Large-Scale RDF Data Analytics , 2017, IEEE Transactions on Parallel and Distributed Systems.

[175]  Natanael Arndt,et al.  TriplePlace-A flexible triple store for Android with six indices , 2011 .

[176]  Muhammad Saleem,et al.  LSQ: The Linked SPARQL Queries Dataset , 2015, SEMWEB.

[177]  Stefan Negru,et al.  How to feed Apache HBase with Petabytes of RDF Data: An Extremely Scalable RDF Store Based on Eclipse RDF4J Framework and Apache HBase Database , 2016, International Semantic Web Conference.

[178]  Michael Stonebraker,et al.  C-Store: A Column-oriented DBMS , 2005, VLDB.

[179]  Jarek Gryz,et al.  Query Planning for Evaluating SPARQL Property Paths , 2016, AMW.

[180]  Eugene Inseok Chong,et al.  An Efficient SQL-based RDF Querying Scheme , 2005, VLDB.

[181]  Andreas Harth,et al.  CumulusRDF: Linked Data Management on Nested Key-Value Stores , 2011 .

[182]  Gerhard Weikum,et al.  The RDF-3X engine for scalable management of RDF data , 2010, The VLDB Journal.

[183]  Gang Wu,et al.  Improving SPARQL query performance with algebraic expression tree based caching and entity caching , 2012, Journal of Zhejiang University SCIENCE C.

[184]  Guohui Xiao,et al.  The Virtual Knowledge Graph System Ontop , 2020, SEMWEB.

[185]  Jorge A. Baier,et al.  Evaluating Navigational RDF Queries over the Web , 2017, HT.

[186]  Dave Kolas,et al.  Efficient Linked-List RDF Indexing in Parliament , 2009 .

[187]  Jens Lehmann,et al.  Sparklify: A Scalable Software Component for Efficient Evaluation of SPARQL Queries over Distributed RDF Datasets , 2019, SEMWEB.

[188]  Nieves R. Brisaboa,et al.  Compressed vertical partitioning for efficient RDF management , 2014, Knowledge and Information Systems.

[189]  Tao Liu,et al.  RStar: an RDF storage and query system for enterprise resource management , 2004, CIKM '04.

[190]  Orri Erling,et al.  Virtuoso: RDF Support in a Native RDBMS , 2009, Semantic Web Information Management.

[191]  Dino Ienco,et al.  Querying RDF Data : A Multigraph Based Approach , 2018 .

[192]  Jens Lehmann,et al.  DISE: A Distributed in-Memory SPARQL Processing Engine over Tensor Data , 2020, 2020 IEEE 14th International Conference on Semantic Computing (ICSC).

[193]  Wenwen Li,et al.  Hash Tree Indexing for Fast SPARQL Query in Large Scale RDF Data Management Systems , 2017, International Semantic Web Conference.

[194]  Xin Wang,et al.  GraSS: An Efficient Method for RDF Subgraph Matching , 2015, WISE.

[195]  Haibo Chen,et al.  Fast and Concurrent RDF Queries with RDMA-Based Distributed Graph Exploration , 2016, OSDI.

[196]  Christian Bizer,et al.  RAP: RDF API for PHP , 2005 .

[197]  Hai Jin,et al.  TripleBit: a Fast and Compact System for Large Scale RDF Data , 2013, Proc. VLDB Endow..

[198]  Zhiyong Feng,et al.  A Comprehensive Study for Essentiality of Graph Based Distributed SPARQL Query Processing , 2018, DASFAA Workshops.

[199]  Catherine Faron-Zucker,et al.  LDScript: A Linked Data Script Language , 2017, International Semantic Web Conference.

[200]  Felix Naumann,et al.  Caching and Prefetching Strategies for SPARQL Queries , 2013, ESWC.

[201]  Olivier Curé,et al.  WaterFowl: A Compact, Self-indexed and Inference-Enabled Immutable RDF Store , 2014, ESWC.

[202]  Kunle Olukotun,et al.  EmptyHeaded: A Relational Engine for Graph Processing , 2015, ACM Trans. Database Syst..

[203]  Maria-Esther Vidal,et al.  Efficiently Joining Group Patterns in SPARQL Queries , 2010, ESWC.

[204]  Katja Hose,et al.  Partout: a distributed engine for efficient RDF processing , 2012, WWW.

[205]  Jürgen Umbrich,et al.  YARS2: A Federated Repository for Querying Graph Structured Data from the Web , 2007, ISWC/ASWC.

[206]  Aidan Hogan,et al.  Efficiently Charting RDF , 2018, ArXiv.

[207]  Mahmudul Hassan,et al.  Data Partitioning Scheme for Efficient Distributed RDF Querying Using Apache Spark , 2019, 2019 IEEE 13th International Conference on Semantic Computing (ICSC).

[208]  Haixun Wang,et al.  A Distributed Graph Engine for Web Scale RDF Data , 2013, Proc. VLDB Endow..

[209]  Ling Liu,et al.  Scaling Queries over Big RDF Graphs with Semantic Hash Partitioning , 2013, Proc. VLDB Endow..

[210]  Peng Peng,et al.  Processing SPARQL queries over distributed RDF graphs , 2014, The VLDB Journal.

[211]  Dan Bennett,et al.  CM-Well: A Data Warehouse for Linked Data , 2017, International Semantic Web Conference.

[212]  Hyoung-Joo Kim,et al.  RG-index: An RDF graph index for efficient SPARQL query processing , 2014, Expert Syst. Appl..

[213]  HyeongSik Kim,et al.  An Intermediate Algebra for Optimizing RDF Graph Pattern Matching on MapReduce , 2011, ESWC.

[214]  Huajun Chen,et al.  SparkRDF: Elastic Discreted RDF Graph Processing Engine With Distributed Memory , 2014, 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT).

[215]  Sherif Sakr,et al.  D-SPARQ: Distributed, Scalable and Efficient RDF Query Engine , 2013, International Semantic Web Conference.

[216]  Latifur Khan,et al.  RDFKB: efficient support for RDF inference queries and knowledge management , 2009, IDEAS '09.

[217]  François Goasdoué,et al.  AMADA: web data repositories in the amazon cloud , 2012, CIKM.

[218]  Brian McBride,et al.  Jena: A Semantic Web Toolkit , 2002, IEEE Internet Comput..

[219]  Sai Krishnan Chirravuri RDF3X-MPI: A Partitioned RDF engine for Data-Parallel SPARQL Querying , 2014 .

[220]  Sherif Sakr,et al.  RDF Data Storage and Query Processing Schemes , 2018, ACM Comput. Surv..

[221]  Hongyan Wu,et al.  BioBenchmark Toyama 2012: an evaluation of the performance of triple stores on biological data , 2014, J. Biomed. Semant..

[222]  Gonzalo Navarro,et al.  Optimal Joins using Compact Data Structures , 2019, ICDT.

[223]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[224]  Nieves R. Brisaboa,et al.  A Compact RDF Store Using Suffix Arrays , 2015, SPIRE.

[225]  Jens Lehmann,et al.  Distributed Semantic Analytics Using the SANSA Stack , 2017, SEMWEB.

[226]  Jens Lehmann,et al.  DBpedia SPARQL Benchmark - Performance Assessment with Real Queries on Real Data , 2011, SEMWEB.

[227]  V. S. Subrahmanian,et al.  DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases , 2009, SEMWEB.

[228]  Richard E. Schantz,et al.  High-performance, massively scalable distributed systems using the MapReduce software framework: the SHARD triple-store , 2010, PSI EtA '10.

[229]  Jorge Pérez,et al.  Static analysis and optimization of semantic web queries , 2012, PODS '12.

[230]  George Papastefanatos,et al.  Distance-Based Triple Reordering for SPARQL Query Optimization , 2017, 2017 IEEE 33rd International Conference on Data Engineering (ICDE).

[231]  Thomas Neumann,et al.  Exploiting the query structure for efficient join ordering in SPARQL queries , 2014, EDBT.

[232]  Xin Wang,et al.  Efficient Subgraph Matching on Large RDF Graphs Using MapReduce , 2019, Data Science and Engineering.

[233]  Markus Krötzsch,et al.  Wikidata , 2014, Commun. ACM.

[234]  Bryan B. Thompson,et al.  The Bigdata® RDF Graph Database , 2014, Linked Data Management.

[235]  Egor V. Kostylev,et al.  SPARQL with Property Paths , 2015, SEMWEB.

[236]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[237]  Vassilis Christophides,et al.  Querying the Semantic Web with RQL , 2003, Comput. Networks.

[238]  Pierre Genevès,et al.  SPARQLGX: Efficient Distributed Evaluation of SPARQL with Apache Spark , 2016, International Semantic Web Conference.

[239]  Hassan Chafi,et al.  The LDBC Social Network Benchmark: Interactive Workload , 2015, SIGMOD Conference.

[240]  Srikanta J. Bedathur,et al.  RQ-RDF-3X: Going beyond triplestores , 2014, 2014 IEEE 30th International Conference on Data Engineering Workshops.

[241]  Manolis Koubarakis,et al.  Modeling and Querying Metadata in the Semantic Sensor Web: The Model stRDF and the Query Language stSPARQL , 2010, ESWC.

[242]  B. Motik,et al.  RDFox: A Highly-Scalable RDF Store , 2015, SEMWEB.

[243]  Vassilis Christophides,et al.  Heuristics-based query optimisation for SPARQL , 2012, EDBT '12.

[244]  Gerhard Weikum,et al.  Scalable join processing on very large RDF graphs , 2009, SIGMOD Conference.

[245]  Mouad Banane,et al.  RDFMongo: A MongoDB Distributed and Scalable RDF management system based on Meta-model , 2019, International Journal of Advanced Trends in Computer Science and Engineering.

[246]  Khadija Alaoui,et al.  A categorization of RDF triplestores , 2019, SCA.

[247]  Sebastian Rudolph,et al.  Managing Structured and Semistructured RDF Data Using Structure Indexes , 2013, IEEE Transactions on Knowledge and Data Engineering.

[248]  Spyros Kotoulas,et al.  Scale-Out Processing of Large RDF Datasets , 2015, IEEE Transactions on Big Data.

[249]  Gerhard Weikum,et al.  RDF-3X: a RISC-style engine for RDF , 2008, Proc. VLDB Endow..

[250]  George A. Vouros,et al.  Efficient spatio-temporal RDF query processing in large dynamic knowledge bases , 2019, SAC.

[251]  Felix Conrads,et al.  How Representative Is a SPARQL Benchmark? An Analysis of RDF Triplestore Benchmarks , 2019, WWW.

[252]  Hiroyuki Kitagawa,et al.  Accelerating Regular Path Queries using FPGA , 2019, ADMS@VLDB.

[253]  Liang Chen,et al.  Stylus: A Strongly-Typed Store for Serving Massive RDF Data , 2017, Proc. VLDB Endow..

[254]  Dave Reynolds,et al.  SPARQL basic graph pattern optimization using selectivity estimation , 2008, WWW.