Pseudo-random Graphs

Random graphs have proven to be one of the most important and fruitful concepts in modern Combinatorics and Theoretical Computer Science. Besides being a fascinating study subject for their own sake, they serve as essential instruments in proving an enormous number of combinatorial statements, making their role quite hard to overestimate. Their tremendous success serves as a natural motivation for the following very general and deep informal questions: what are the essential properties of random graphs? How can one tell when a given graph behaves like a random graph? How to create deterministically graphs that look random-like? This leads us to a concept of pseudo-random graphs.

[1]  R. C. Bose Strongly regular graphs, partial geometries and partially balanced designs. , 1963 .

[2]  Walter Feit,et al.  The nonexistence of certain generalized polygons , 1964 .

[3]  M. Murty Ramanujan Graphs , 1965 .

[4]  H. Davenport Multiplicative Number Theory , 1967 .

[5]  C. V. Eynden,et al.  A proof of a conjecture of Erdös , 1969 .

[6]  A. J. Hoffman,et al.  ON EIGENVALUES AND COLORINGS OF GRAPHS, II , 1970 .

[7]  Paul Erdös,et al.  Imbalances in k-colorations , 1971, Networks.

[8]  Paul Erdös,et al.  A note on Hamiltonian circuits , 1972, Discret. Math..

[9]  Vasek Chvátal,et al.  Tough graphs and hamiltonian circuits , 1973, Discret. Math..

[10]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[11]  M. Simonovits,et al.  Cycles of even length in graphs , 1974 .

[12]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[13]  J. J. Seidel,et al.  A SURVEY OF TWO-GRAPHS , 1976 .

[14]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[15]  L. Lovász Combinatorial problems and exercises , 1979 .

[16]  B. Bollobás Surveys in Combinatorics , 1979 .

[17]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[18]  Rudolf Lide,et al.  Finite fields , 1983 .

[19]  János Komlós,et al.  Limit distribution for the existence of hamiltonian cycles in a random graph , 1983, Discret. Math..

[20]  Andries E. Brouwer,et al.  Strongly regular graphs and partial geometries , 1984 .

[21]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[22]  R. M. Tanner Explicit Concentrators from Generalized N-Gons , 1984 .

[23]  Alan M. Frieze,et al.  On the value of a random minimum spanning tree problem , 1985, Discret. Appl. Math..

[24]  Eugene L. Lawler,et al.  The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization , 1985 .

[25]  N. Biggs THE TRAVELING SALESMAN PROBLEM A Guided Tour of Combinatorial Optimization , 1986 .

[26]  Andrei Z. Broder,et al.  On the second eigenvalue of random regular graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[27]  A. Thomason Pseudo-Random Graphs , 1987 .

[28]  Endre Szemerédi,et al.  On the second eigenvalue of random regular graphs , 1989, STOC '89.

[29]  Fan Chung Graham,et al.  Quasi-random graphs , 1988, Comb..

[30]  Noga Alon The Number of Spanning Trees in Regular Graphs , 1990, Random Struct. Algorithms.

[31]  Noga Alon,et al.  On the second eigenvalue of a graph , 1991, Discret. Math..

[32]  Miklós Simonovits,et al.  Szemerédi's Partition and Quasirandomness , 1991, Random Struct. Algorithms.

[33]  László Lovász,et al.  Combinatorial problems and exercises (2. ed.) , 1993 .

[34]  N. Alon Restricted colorings of graphs , 1993 .

[35]  Noga Alon,et al.  Explicit Ramsey graphs and orthonormal labelings , 1994, Electron. J. Comb..

[36]  Vojtech Rödl,et al.  The Algorithmic Aspects of the Regularity Lemma , 1994, J. Algorithms.

[37]  Noga Alon,et al.  Random Cayley Graphs and Expanders , 1994, Random Struct. Algorithms.

[38]  N. Alon Tough Ramsey Graphs Without Short Cycles , 1995 .

[39]  N. Alon Bipartite subgraphs (Final Version; appeared in Combinatorica 16 (1996), 301-311.) , 1996 .

[40]  Noga Alon,et al.  Bipartite subgraphs , 1996, Comb..

[41]  Lajos Rónyai,et al.  Norm-graphs and bipartite turán numbers , 1996, Comb..

[42]  Miklós Simonovits,et al.  Hereditarily extended properties, quasi-random graphs and not necessarily induced subgraphs , 1997, Comb..

[43]  János Komlós,et al.  Blow-up Lemma , 1997, Combinatorics, Probability and Computing.

[44]  Zsolt Tuza,et al.  New trends in the theory of graph colorings: Choosability and list coloring , 1997, Contemporary Trends in Discrete Mathematics.

[45]  Noga Alon,et al.  Constructive Bounds for a Ramsey-Type Problem , 1997, Graphs Comb..

[46]  Vojtech Rödl,et al.  Perfect Matchings in ε-regular Graphs , 1998, Electron. J. Comb..

[47]  Alan M. Frieze,et al.  Random Minimum Length Spanning Trees in Regular Graphs , 1998, Comb..

[48]  Noga Alon,et al.  Approximating the independence number via theϑ-function , 1998, Math. Program..

[49]  Vojtech Rödl,et al.  Perfect Matchings in ε-Regular Graphs and the Blow-Up Lemma , 1999, Comb..

[50]  N. Wormald,et al.  Models of the , 2010 .

[51]  F. Lazebnik,et al.  Polarities and 2 k -cycle-free graphs , 1999 .

[52]  Felix Lazebnik,et al.  Polarities and 2k-cycle-free graphs , 1999, Discret. Math..

[53]  Noga Alon,et al.  Norm-Graphs: Variations and Applications , 1999, J. Comb. Theory, Ser. B.

[54]  V. Vu On some simple degree conditions that guarantee the upper bound on the chromatic (choice) number of random graphs , 1999 .

[55]  Noga Alon,et al.  List Coloring of Random and Pseudo-Random Graphs , 1999, Comb..

[56]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[57]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[58]  Alan M. Frieze On the Number of Perfect Matchings and Hamilton Cycles in e-Regular Non-bipartite Graphs , 2000, Electron. J. Comb..

[59]  Alan Frieze,et al.  On the Number of Perfect Matchings and Hamilton Cycles in $\epsilon$-Regular Non-bipartite Graphs , 2000 .

[60]  Benny Sudakov,et al.  Random regular graphs of high degree , 2001, Random Struct. Algorithms.

[61]  N. Alon,et al.  Constructive lower bounds for off-diagonal Ramsey numbers , 2001 .

[62]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[63]  Dennis Saleh Zs , 2001 .

[64]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[65]  Alan M. Frieze,et al.  Random Regular Graphs of Non-Constant Degree: Connectivity and Hamiltonicity , 2002, Combinatorics, Probability and Computing.

[66]  Vojtech Rödl,et al.  TR-2003-010 Asymptotically tight bounds for some multicolored Ramsey numbers , 2002 .

[67]  Benny Sudakov,et al.  A Sharp Threshold for Network Reliability , 2002, Combinatorics, Probability and Computing.

[68]  V. Rödl,et al.  Embedding graphs with bounded degree in sparse pseudorandom graphs , 2004 .

[69]  Fan Chung Graham,et al.  Sparse Quasi-Random Graphs , 2002, Comb..

[70]  Alan M. Frieze,et al.  Hamilton cycles in random subgraphs of pseudo-random graphs , 2002, Discret. Math..

[71]  Joel Friedman,et al.  A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.

[72]  Tibor Szabó On the spectrum of projective norm-graphs , 2003, Inf. Process. Lett..

[73]  Tibor Szabó,et al.  Turán's theorem in sparse random graphs , 2003, Random Struct. Algorithms.

[74]  Peter J. Cameron,et al.  Strongly regular graphs , 2003 .

[75]  Benny Sudakov,et al.  Sparse pseudo-random graphs are Hamiltonian , 2003, J. Graph Theory.

[76]  Noga Alon,et al.  Maximum cuts and judicious partitions in graphs without short cycles , 2003, J. Comb. Theory B.

[77]  Alan M. Frieze,et al.  The emergence of a giant component in random subgraphs of pseudo‐random graphs , 2004, Random Struct. Algorithms.

[78]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[79]  Benny Sudakov,et al.  Triangle Factors In Sparse Pseudo-Random Graphs , 2004, Comb..

[80]  Noga Alon,et al.  Percolation on finite graphs and isoperimetric inequalities , 2004 .

[81]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[82]  Yoshiharu Kohayakawa,et al.  The Turán Theorem for Random Graphs , 2004, Comb. Probab. Comput..

[83]  Benny Sudakov,et al.  A generalization of Turán's theorem , 2005, J. Graph Theory.

[84]  Vladimir Nikiforov,et al.  The Cycle-Complete Graph Ramsey Numbers , 2004, Combinatorics, Probability and Computing.

[85]  Vojtech Rödl,et al.  Sharp Bounds For Some Multicolor Ramsey Numbers , 2005, Comb..

[86]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[87]  A. Hora,et al.  Distance-Regular Graphs , 2007 .

[88]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .