Fully-Parallel Quantum Turbo Decoder

Quantum turbo codes (QTCs) are known to operate close to the achievable Hashing bound. However, the sequential nature of the conventional quantum turbo decoding algorithm imposes a high decoding latency, which increases linearly with the frame length. This posses a potential threat to quantum systems having short coherence times. In this context, we conceive a fully-parallel quantum turbo decoder (FPQTD), which eliminates the inherent time dependences of the conventional decoder by executing all the associated processes concurrently. Due to its parallel nature, the proposed FPQTD reduces the decoding times by several orders of magnitude, while maintaining the same performance. We have also demonstrated the significance of employing an odd-even interleaver design in conjunction with the proposed FPQTD. More specifically, it is shown that an odd-even interleaver reduces the computational complexity by 50%, without compromising the achievable performance.

[1]  Markus Grassl,et al.  Convolutional and Tail-Biting Quantum Error-Correcting Codes , 2005, IEEE Transactions on Information Theory.

[2]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[3]  Lajos Hanzo,et al.  Iterative Quantum-Assisted Multi-User Detection for Multi-Carrier Interleave Division Multiple Access Systems , 2015, IEEE Transactions on Communications.

[4]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[5]  Lajos Hanzo,et al.  Noncoherent Quantum Multiple Symbol Differential Detection for Wireless Systems , 2015, IEEE Access.

[6]  Richard Cleve Quantum stabilizer codes and classical linear codes , 1997 .

[7]  B. Moor,et al.  Clifford group, stabilizer states, and linear and quadratic operations over GF(2) , 2003, quant-ph/0304125.

[8]  H. Ollivier,et al.  Quantum convolutional codes: fundamentals , 2004 .

[9]  Robert G. Maunder A Fully-Parallel Turbo Decoding Algorithm , 2015, IEEE Transactions on Communications.

[10]  Lajos Hanzo,et al.  The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure , 2015, IEEE Access.

[11]  Lajos Hanzo,et al.  Reduced-Complexity Syndrome-Based TTCM Decoding , 2013, IEEE Communications Letters.

[12]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[13]  Soon Xin Ng,et al.  Non-Dominated Quantum Iterative Routing Optimization for Wireless Multihop Networks , 2015, IEEE Access.

[14]  David Poulin,et al.  Quantum Serial Turbo Codes , 2009, IEEE Transactions on Information Theory.

[15]  Soon Xin Ng,et al.  Fifteen Years of Quantum LDPC Coding and Improved Decoding Strategies , 2015, IEEE Access.

[16]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[17]  Martin Rötteler,et al.  Constructions of Quantum Convolutional Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[18]  Robert G. Maunder,et al.  VLSI Implementation of Fully Parallel LTE Turbo Decoders , 2016, IEEE Access.

[19]  T. H. Liew,et al.  Turbo Coding, Turbo Equalisation and Space-Time Coding: EXIT-Chart-Aided Near-Capacity Designs for Wireless Channels , 2011 .

[20]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[21]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[22]  David Poulin,et al.  Degenerate Viterbi Decoding , 2012, IEEE Transactions on Information Theory.

[23]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[24]  Patrick Robertson,et al.  A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[25]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[26]  Jean-Pierre Tillich,et al.  Description of a quantum convolutional code. , 2003, Physical review letters.

[27]  Lajos Hanzo,et al.  Fully Parallel Turbo Equalization for Wireless Communications , 2015, IEEE Access.

[28]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[29]  Zunaira Babar,et al.  Entanglement-Assisted Quantum Turbo Codes , 2010, IEEE Transactions on Information Theory.

[30]  B. L. Yeap,et al.  Turbo Coding, Turbo Equalisation and Space-Time Coding , 2002 .

[31]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[32]  Lajos Hanzo,et al.  Extrinsic Information Transfer Charts for Characterizing the Iterative Decoding Convergence of Fully Parallel Turbo Decoders , 2015, IEEE Access.

[33]  Lajos Hanzo,et al.  Efficient Computation of EXIT Functions for Nonbinary Iterative Decoding , 2006, IEEE Transactions on Communications.

[34]  Mark M. Wilde,et al.  Entanglement boosts quantum turbo codes , 2011, ISIT.

[35]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[36]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[37]  Daniel J. Costello,et al.  Error Control Coding, Second Edition , 2004 .

[38]  A. Harrow,et al.  Efficient distributed quantum computing , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  Lajos Hanzo,et al.  EXIT-Chart-Aided Near-Capacity Quantum Turbo Code Design , 2015, IEEE Transactions on Vehicular Technology.

[40]  Christian Kurtsiefer,et al.  LETTER TO THE EDITOR: Secure communication with single-photon two-qubit states , 2001 .