The short-sequence designs of isochores from the human genome

The human genome, a typical mammalian genome, is made up of long (≈1-Mb, on average) regions, the isochores, that are fairly homogeneous in base composition and belong in five families characterized by different GC levels. An analysis of di- and tri-nucleotide densities in the isochores from the five families has shown large differences. These different “short-sequence designs:” (i) account for the fractionation of human DNA (and vertebrate DNA in general) when using sequence-specific ligands in density gradients, (ii) are very similar in whole isochores and in the corresponding intergenic sequences and introns, (iii) are reflected in different codon usages, (iv) lead to amino acid differences that increase the thermal stability of the proteins encoded by genes located in increasingly GC-rich isochore families, and (v) correspond to different chromatin structures.

[1]  Ernest,et al.  Enzymatic synthesis of deoxyribonucleic acid. , 1969, Harvey lectures.

[2]  M Meselson,et al.  THE RELATIVE HOMOGENEITY OF MICROBIAL DNA. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. Josse,et al.  Enzymatic synthesis of deoxyribonucleic acid. VIII. Frequencies of nearest neighbor base sequences in deoxyribonucleic acid. , 1961, The Journal of biological chemistry.

[4]  A. Kornberg,et al.  Enzymatic synthesis of deoxyribonucleic acid. XI. Further studies on nearest neighbor base sequences in deoxyribonucleic acids. , 1962, The Journal of biological chemistry.

[5]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[6]  G. Bernardi,et al.  Isolation and characterization of mouse and guinea pig satellite deoxyribonucleic acids. , 1968, Biochemistry.

[7]  G Bernardi,et al.  An analysis of the bovine genome by Cs2SO4-Ag density gradient centrifugation. , 1973, Journal of molecular biology.

[8]  R. Elton,et al.  Doublet frequency analysis of fractionated vertebrate nuclear DNA. , 1976, Journal of molecular biology.

[9]  G Bernardi,et al.  An approach to the organization of eukaryotic genomes at a macromolecular level. , 1976, Journal of molecular biology.

[10]  G Bernardi,et al.  An analysis of eukaryotic genomes by density gradient centrifugation. , 1976, Journal of molecular biology.

[11]  P Argos,et al.  Thermal stability and protein structure. , 1979, Biochemistry.

[12]  A. Meager,et al.  Enhancement of interferon mRNA levels in butyric acid‐treated namalwa cells , 1980, FEBS letters.

[13]  G. Bernardi,et al.  An analysis of fish genomes by density gradient centrifugation. , 1980, European journal of biochemistry.

[14]  G Bernardi,et al.  The major components of the mouse and human genomes. 1. Preparation, basic properties and compositional heterogeneity. , 1981, European journal of biochemistry.

[15]  G Bernardi,et al.  The major components of the mouse and human genomes. 2. Reassociation kinetics. , 1981, European journal of biochemistry.

[16]  G Bernardi,et al.  The mosaic genome of warm-blooded vertebrates. , 1985, Science.

[17]  Wen-Hsiung Li,et al.  An evolutionary perspective on synonymous codon usage in unicellular organisms , 1986, Journal of Molecular Evolution.

[18]  G Bernardi,et al.  CpG islands, genes and isochores in the genomes of vertebrates. , 1991, Gene.

[19]  R. Dickerson,et al.  DNA structure from A to Z. , 1992, Methods in enzymology.

[20]  Andrew Travers,et al.  DNA-Protein Interactions , 1993, Springer Netherlands.

[21]  S. Karlin,et al.  Dinucleotide relative abundance extremes: a genomic signature. , 1995, Trends in genetics : TIG.

[22]  G Bernardi,et al.  The gene distribution of the human genome. , 1996, Gene.

[23]  G Bernardi,et al.  Evolutionary changes in CpG and methylation levels in the genome of vertebrates. , 1997, Gene.

[24]  G Bernardi,et al.  CpG doublets, CpG islands and Alu repeats in long human DNA sequences from different isochore families. , 1998, Gene.

[25]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[26]  S Karlin,et al.  Genome-scale compositional comparisons in eukaryotes. , 2001, Genome research.

[27]  G Bernardi,et al.  Misunderstandings about isochores. Part 1. , 2001, Gene.

[28]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[29]  Giorgio Bernardi,et al.  Localization of the gene-richest and the gene-poorest isochores in the interphase nuclei of mammals and birds. , 2002, Gene.

[30]  M. Groudine,et al.  Controlling the double helix , 2003, Nature.

[31]  E. Kimura,et al.  Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. , 2003, Genome research.

[32]  J. Bonfield,et al.  Finishing the euchromatic sequence of the human genome , 2004, Nature.

[33]  C. Ponting,et al.  Finishing the euchromatic sequence of the human genome , 2004 .

[34]  Giorgio Bernardi,et al.  Structural and evolutionary genomics : natural selection in genome evolution , 2004 .

[35]  Kamel Jabbari,et al.  Cytosine methylation and CpG, TpG (CpA) and TpA frequencies. , 2004, Gene.

[36]  G. Bernardi,et al.  Compositional constraints and genome evolution , 2005, Journal of Molecular Evolution.

[37]  Irene K. Moore,et al.  A genomic code for nucleosome positioning , 2006, Nature.

[38]  Giorgio Bernardi,et al.  An isochore map of human chromosomes. , 2006, Genome research.

[39]  Giorgio Bernardi,et al.  Mapping DNase-I hypersensitive sites on human isochores. , 2008, Gene.

[40]  G. Bernardi,et al.  Replication timing, chromosomal bands, and isochores , 2008, Proceedings of the National Academy of Sciences.