Real-Time Millimeter Wave Radar Simulation

This paper summarizes the ideas involved in implementing an imaging radar simulator based on using modern computer graphics hardware. Recent technologies were heavily used, like vertex and fragment shaders, reaching performances up to 90 Hz on a standard workstation. For greater realism, radar shadows were generated, implementing shadow map techniques in the programmable graphics hardware. Furthermore, a Phong-like approach (Phong, B. T., “Illumination for Computer Generated Pictures,” Communications of the ACM, Vol. 18, No. 6, June 1975, pp. 311–317) is presented for modeling the bidirectional reflectance distribution function of the mean normalized radar cross section. In the past, different models have been proposed for this task. While being accurate in most cases, they lack an intuitive understanding. The new model is intuitive by making use of categories of diffuse and specular reflections. Although it is computationally more efficient than previous approaches, it is composed of only a few parameter...

[1]  Hans-Peter Seidel,et al.  Shadow Volumes on Programmable Graphics Hardware , 2003, Comput. Graph. Forum.

[2]  Derek A. McNamara,et al.  Introduction to the Uniform Geometrical Theory of Diffraction , 1990 .

[3]  Bernd Korn,et al.  Simulation of imaging radar using graphics hardware acceleration , 2008, SPIE Defense + Commercial Sensing.

[4]  Karlheinz Hellemann,et al.  Recent progress in millimeter-wave sensor system capabilities for enhanced (synthetic) vision , 1999, Defense, Security, and Sensing.

[5]  Kelce S. Wilson,et al.  Radar scattering statistics for digital terrain models , 2005, SPIE Defense + Commercial Sensing.

[6]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[7]  Tom Davis,et al.  Opengl programming guide: the official guide to learning opengl , 1993 .

[8]  H.-U. Doehler,et al.  ALLFlight: tackling the brownout problem , 2012 .

[9]  Lance Williams,et al.  Casting curved shadows on curved surfaces , 1978, SIGGRAPH.

[10]  Niklas Peinecke,et al.  An evaluation test bed for enhanced vision , 2010, Defense + Commercial Sensing.

[11]  D. J. Allerton,et al.  Real-time modeling of a radar sensor for enhanced vision , 2003, SPIE Defense + Commercial Sensing.

[12]  Bernd Korn COMBINING ENHANCED AND SYNTHETIC VISION: DLR’S PROJECT ADVISE-PRO , 2007 .

[13]  R. D. Hayes,et al.  Millimeter-Wave Radar Clutter , 1992 .

[14]  N. Peinecke,et al.  Lidar simulation using graphics hardware acceleration , 2008, 2008 IEEE/AIAA 27th Digital Avionics Systems Conference.

[15]  Jinjun Shan,et al.  Using the DIMMACSS-PSG Intelligent Robotic Middleware to Control Real-World and Simulated Multi-Agent Systems , 2015 .

[16]  David Blythe The Direct3D 10 system , 2006, SIGGRAPH 2006.

[17]  Uwe Stilla,et al.  Hybrid GPU-Based Single- and Double-Bounce SAR Simulation , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Hans-Ullrich Doehler,et al.  Simulation of imaging radar for obstacle avoidance and enhanced vision , 1997, Defense, Security, and Sensing.

[19]  Yunhan Dong,et al.  Models of Land Clutter vs Grazing Angle, Spatial Distribution and Temporal Distribution - L-Band VV Polarisation Perspective , 2004 .

[20]  F. Ulaby,et al.  Handbook of radar scattering statistics for terrain , 1989 .

[21]  Bernd Korn,et al.  Stereo radar: reconstructing 3D data from 2D radar , 2008, SPIE Defense + Commercial Sensing.

[22]  Niklas Peinecke,et al.  Integration of a 2.5D radar simulation in a sensor simulation suite , 2010, 29th Digital Avionics Systems Conference.

[23]  Juan M. Rius,et al.  High-frequency RCS of complex radar targets in real-time , 1993 .

[24]  Yulia V. Zhulina 3D Visualization of Radar Backscattering Diagrams Based on OpenGL , 2004, EURASIP J. Adv. Signal Process..

[25]  Lawrence A. Klein,et al.  Millimeter-Wave and Infrared Multisensor Design and Signal Processing , 1997 .

[26]  Jens Schiefele,et al.  Flight simulator with IR and MMW radar image generation capabilities , 2006, SPIE Defense + Commercial Sensing.

[27]  N. Bojarski,et al.  A survey of the physical optics inverse scattering identity , 1982 .

[28]  Erik Lindholm,et al.  A user-programmable vertex engine , 2001, SIGGRAPH.

[29]  Adib Y. Nashashibi,et al.  SPRI: simulator of polarimetric radar images , 2002 .

[30]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[31]  William B. Langdon PRNG Random Numbers on GPU , 2007 .

[32]  Donald P. Greenberg,et al.  Non-linear approximation of reflectance functions , 1997, SIGGRAPH.

[33]  Richard Bamler,et al.  Ray-Tracing Simulation Techniques for Understanding High-Resolution SAR Images , 2010, IEEE Transactions on Geoscience and Remote Sensing.