Interactions in a Multi-scale Representation of Sparse Media: From Mechanics to Thermodynamics

We develop further a discrete-to-continuum approach to sparse media for which we do not grant the common axiom of permanent identification of the material elements. After refining our previous work on this topic, we focus our attention on the identification of stresses and self-actions at continuum scale in terms of the molecular interactions. Moreover, we introduce and discuss a notion of tensorial temperature by considering a grand canonical statistical ensemble constituted by molecules freely flowing in and out a control volume.

[1]  P. M. Mariano,et al.  Objective fluxes in a multi-scale continuum description of sparse medium dynamics , 2014 .

[2]  Clockwork, ephemeral and hybrid continua , 2011 .

[3]  M. Pitteri On a statistical-kinetic model for generalized continua , 1990 .

[4]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[5]  Silke Henkes,et al.  Statistical mechanics framework for static granular matter. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Weinan E,et al.  Cauchy–Born Rule and the Stability of Crystalline Solids: Static Problems , 2007 .

[7]  Richard B. Lehoucq,et al.  Translation of Walter Noll’s “Derivation of the Fundamental Equations of Continuum Thermodynamics from Statistical Mechanics” , 2010 .

[8]  Walter Noll La Mécanique Classique, Basée sur un Axiome d’Objectivité , 1974 .

[9]  P. M. Mariano,et al.  Multi-scale kinetic description of granular clusters: invariance, balance, and temperature , 2018 .

[10]  M. Ulz,et al.  A stochastic approximation approach to improve the convergence behavior of hierarchical atomistic-to-continuum multiscale models , 2016 .

[11]  Raphael Blumenfeld,et al.  On granular stress statistics: compactivity, angoricity, and some open issues. , 2009, The journal of physical chemistry. B.

[12]  W. E,et al.  Matching conditions in atomistic-continuum modeling of materials. , 2001, Physical review letters.

[13]  James G. Puckett,et al.  Physics and Astronomy Faculty Publications Physics and Astronomy Equilibrating Temperaturelike Variables in Jammed Granular Subsystems , 2022 .

[14]  W. Noll,et al.  Die Herleitung der Grundgleichungen der Thermomechanik der Kontinua aus der Statistischen Mechanik , 1955 .

[15]  Ellad B. Tadmor,et al.  Modeling Materials: Continuum, Atomistic and Multiscale Techniques , 2011 .

[16]  A. Murdoch Physical Foundations of Continuum Mechanics , 2012 .

[17]  A. Murdoch A corpuscular approach to continuum mechanics: Basic considerations , 1985 .

[18]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[19]  Continuum equations of balance in classical statistical mechanics , 1986 .

[20]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[21]  G. Capriz Elementary preamble to a theory of granular gases , 2003, math-ph/0306019.

[22]  P. M. Mariano Mechanics of Material Mutations , 2014 .

[23]  I. Stakgold The Cauchy relations in a molecular theory of elasticity , 1950 .

[24]  Ted Belytschko,et al.  A continuum‐to‐atomistic bridging domain method for composite lattices , 2010 .

[25]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[26]  John R. Ray,et al.  Statistical ensembles and molecular dynamics studies of anisotropic solids , 1984 .

[27]  G. Mazzini,et al.  Invariance and Balance in Continuum Mechanics , 1998 .

[28]  P. M. Mariano,et al.  Strain localization in elastic micro-cracked bodies , 2001 .

[29]  Protein dynamics: An approach based on the Cauchy-Born rule , 2014 .

[30]  Clifford Ambrose Truesdell,et al.  Fundamentals of Maxwell's kinetic theory of a simple monatomic gas , 1980 .

[31]  J. Ericksen On nonlinear elasticity theory for crystal defects , 1998 .

[32]  Michel Chipot,et al.  Elements of Nonlinear Analysis , 2000 .

[33]  S. Edwards,et al.  Theory of powders , 1989 .

[34]  G. Caprizt,et al.  On ephemeral continua , 2008 .

[35]  Geometry of interactions in complex bodies , 2004, math-ph/0406036.

[36]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[37]  Manfred Hannes Ulz,et al.  A Multiscale Molecular Dynamics Method for Isothermal Dynamic Problems using the Seamless Heterogeneous Multiscale Method , 2015 .

[38]  Silke Henkes,et al.  Entropy and temperature of a static granular assembly: an ab initio approach. , 2007, Physical review letters.

[39]  Paolo Maria Mariano,et al.  Multifield theories in mechanics of solids , 2002 .

[40]  M. Grmela Externally Driven Macroscopic Systems: Dynamics Versus Thermodynamics , 2016, 1601.07151.

[41]  P. Giovine,et al.  Classes of ephemeral continua , 2018 .

[42]  J. Naudts,et al.  The grand canonical ensemble in generalized thermostatistics , 2004, cond-mat/0406050.

[43]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[44]  F. Larsson,et al.  A goal-oriented adaptive procedure for the quasi-continuum method with cluster approximation , 2015 .

[45]  J. Jenkins Boundary Conditions for Rapid Granular Flow: Flat, Frictional Walls , 1992 .