Unboundedly parallel simulations via recurrence relations

New methods are presented for parallel simulation of discrete event systems that, when applicable, can usefully employ a number of processors much larger than the number of objects in the system being simulated. Abandoning the distributed event list approach, the simulation problem is posed using recurrence relations. We bring three algorithmic ideas to bear on parallel simulation: <italic>parallel prefix computation, parallel merging</italic>, and <italic>iterative folding</italic>. Efficient parallel simulations are given for (in turn) the G/G/1 queue, a variety of queueing networks having a global first come first served structure (e.g., a series of queues with finite buffers), acyclic networks of queues, and networks of queues with feedbacks and cycles. In particular, the problem of simulating the arrival and departure times for the first <italic>N</italic> jobs to a single G/G/1 queue is solved in time proportional to <italic>N/P</italic> + log <italic>P</italic> using <italic>P</italic> processors.

[1]  Donald F. Towsley,et al.  Acyclic fork-join queuing networks , 1989, JACM.

[2]  Norman M. Abramson,et al.  Development of the ALOHANET , 1985, IEEE Trans. Inf. Theory.

[3]  Albert G. Greenberg,et al.  Efficient Parallel Algorithms for Linear Recurrence Computation , 1982, Inf. Process. Lett..

[4]  Boris D. Lubachevsky,et al.  Efficient Parallel Simulations of Asynchronous Cellular Arrays , 2005, Complex Syst..

[5]  Larry Rudolph,et al.  The power of parallel prefix , 1985, IEEE Transactions on Computers.

[6]  Tse-yun Feng,et al.  A Survey of Interconnection Networks , 1981, Computer.

[7]  Boris D. Lubachevsky,et al.  Efficient distributed event-driven simulations of multiple-loop networks , 1988, CACM.

[8]  Albert G. Greenberg,et al.  Simple, Efficient Asynchronous Parallel Prefix Algorithms , 1987, ICPP.

[9]  Gerald L. Thompson,et al.  Programming and probability models in operations research , 1973 .

[10]  Leonard Kleinrock,et al.  Queueing Systems: Volume I-Theory , 1975 .

[11]  Kenneth E. Batcher,et al.  Sorting networks and their applications , 1968, AFIPS Spring Joint Computing Conference.

[12]  Philip Heidelberger Statistical analysis of parallel simulations , 1986, WSC '86.

[13]  David R. Jefferson,et al.  Virtual time , 1985, ICPP.

[14]  Clyde P. Kruskal,et al.  Searching, Merging, and Sorting in Parallel Computation , 1983, IEEE Transactions on Computers.

[15]  Debasis Mitra,et al.  Control and coordination policies for systems with buffers , 1989, SIGMETRICS '89.

[16]  共立出版株式会社 コンピュータ・サイエンス : ACM computing surveys , 1978 .

[17]  Selim G. Akl,et al.  Design and analysis of parallel algorithms , 1985 .

[18]  Howard Jay Siegel,et al.  Using the multistage cube network topology in parallel supercomputers , 1989 .

[19]  David M. Nicol Parallel discrete-event simulation of FCFS stochastic queueing networks , 1988, PPoPP 1988.

[20]  Isi Mitrani Simulation techniques for discrete event systems , 1982, Cambridge computer science texts.

[21]  Edward D. Lazowska,et al.  Parallel simulation of queueing networks: limitations and potentials , 1989, SIGMETRICS '89.

[22]  R. Grondalski,et al.  A VLSI chip set for a massively parallel architecture , 1987, 1987 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[23]  K. Mani Chandy,et al.  Distributed Simulation: A Case Study in Design and Verification of Distributed Programs , 1979, IEEE Transactions on Software Engineering.

[24]  Jayadev Misra,et al.  Distributed discrete-event simulation , 1986, CSUR.

[25]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[26]  W. Whitt The efficiency of one long run versus independent replication in steady-state simulation , 1991 .

[27]  Leonard Kleinrock,et al.  Theory, Volume 1, Queueing Systems , 1975 .