Topological Methods for Visualizing Vortical Flows
暂无分享,去创建一个
[1] Stephen Mann,et al. Computing singularities of 3D vector fields with geometric algebra , 2002, IEEE Visualization, 2002. VIS 2002..
[2] Al Globus,et al. A tool for visualizing the topology of three-dimensional vector fields , 1991, Proceeding Visualization '91.
[3] A. Andronov,et al. Qualitative Theory of Second-order Dynamic Systems , 1973 .
[4] Hans-Peter Seidel,et al. Feature Flow Fields , 2003, VisSym.
[5] Hans Hagen,et al. Topology tracking for the visualization of time-dependent two-dimensional flows , 2002, Comput. Graph..
[6] Deborah Silver,et al. Visualizing features and tracking their evolution , 1994, Computer.
[7] Ronald Peikert,et al. The "Parallel Vectors" operator-a vector field visualization primitive , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).
[8] Xavier Tricoche,et al. Surface techniques for vortex visualization , 2004, VISSYM'04.
[9] William E. Lorensen,et al. The stream polygon-a technique for 3D vector field visualization , 1991, Proceeding Visualization '91.
[10] D. Sujudi,et al. Identification of Swirling Flow in 3-D Vector Fields , 1995 .
[11] Ronald Peikert,et al. Vortex Tracking in Scale-Space , 2002, VisSym.
[12] Lambertus Hesselink,et al. Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.
[13] Jian Chen,et al. The feature tree: visualizing feature tracking in distributed AMR datasets , 2003, IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 2003. PVG 2003..
[14] Xin Wang,et al. Tracking and Visualizing Turbulent 3D Features , 1997, IEEE Trans. Vis. Comput. Graph..
[15] Robert Haimes,et al. Vortex identification—applications in aerodynamics: a case study , 1997 .
[16] David C. Banks,et al. Extracting iso-valued features in 4-dimensional scalar fields , 1998, VVS '98.
[17] Simon Tavener,et al. On the creation of stagnation points near straight and sloped walls , 2000 .
[18] Xavier Tricoche,et al. Tracking of vector field singularities in unstructured 3D time-dependent datasets , 2004, IEEE Visualization 2004.
[19] Hans-Peter Seidel,et al. Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields , 2003, IEEE Visualization, 2003. VIS 2003..