Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency

Abstract The world's first fuel cell described in the early 1800's was fueled with hydrogen. While hydrogen is still the most common fuel, hydrocarbon fuels offer several advantages including availability at a lower cost, higher storage density and existing infrastructure. This paper provides an overview for the significant potential benefits of using hydrocarbon fuels directly in a fuel cell system. Their use leads to a reduction in the capital cost due to the elimination of the fuel processor unit. The fundamentals, advantages, types of direct hydrocarbon fuel cells (DHFC), challenges and applications are discussed in this paper. The past and current status of research and development activities are addressed with emphasis on efficiency and exergy analyses. In spite of their high theoretical energy efficiency, technical challenges remain unsolved in DHFC systems. In high temperature hydrocarbon fueled operation, the deposition of carbon-based material leads to fuel cell degradation. In lower temperature fuel cells, electrode (mainly the anode) over-potentials and fuel crossover are still challenging. Therefore, the improvement and commercialization of these types of fuel cells will probably require the development of less or non-noble catalysts and reasonably functioning membranes.

[1]  T. Robinson,et al.  n-Hexadecane Fuel for a Phosphoric Acid Direct Hydrocarbon Fuel Cell , 2015 .

[2]  Ahmad Fauzi Ismail,et al.  Recent fabrication techniques for micro-tubular solid oxide fuel cell support: A review , 2015 .

[3]  S. Nam,et al.  Hydrogen sulfide-resilient anodes for molten carbonate fuel cells , 2013 .

[4]  Dragana L. Žugić,et al.  Enhanced Performance of the Solid Alkaline Fuel Cell Using PVA-KOH Membrane , 2013, International Journal of Electrochemical Science.

[5]  S. Basu,et al.  Direct alkaline fuel cell for multiple liquid fuels: Anode electrode studies , 2007 .

[6]  Ermete Antolini,et al.  The stability of molten carbonate fuel cell electrodes: A review of recent improvements , 2011 .

[7]  Abdul-Ghani Olabi,et al.  Developments in fuel cell technologies in the transport sector , 2016 .

[8]  H. R. Kunz,et al.  Phosphoric acid electrolyte fuel cells , 2010 .

[9]  H. Song,et al.  Exergy analysis on non-catalyzed partial oxidation reforming using homogeneous charge compression ignition engine in a solid oxide fuel cell system , 2018 .

[10]  Mehdi Mehrpooya,et al.  Energy, exergy and sensitivity analyses of a hybrid combined cooling, heating and power (CCHP) plant with molten carbonate fuel cell (MCFC) and Stirling engine , 2017 .

[11]  S. C. Singhal,et al.  FUEL CELLS – SOLID OXIDE FUEL CELLS | Overview , 2009 .

[12]  Jarosław Milewski,et al.  Molten carbonate fuel cell operation under high concentrations of SO2 on the cathode side , 2016 .

[13]  J. Irvine,et al.  Electrochemical oxidation of solid carbon in hybrid DCFC with solid oxide and molten carbonate binary electrolyte , 2008 .

[14]  S. Singhal Advances in solid oxide fuel cell technology , 2000 .

[15]  B. Peppley,et al.  A modified silicic acid (Si) and sulphuric acid (S)–ZrP/PTFE/glycerol composite membrane for high temperature direct hydrocarbon fuel cells , 2013 .

[16]  Daniel Garraín,et al.  Polymer Electrolyte Membrane Fuel Cells (PEMFC) in Automotive Applications: Environmental Relevance of the Manufacturing Stage , 2011 .

[17]  Andrea Nicolini,et al.  Ethanol reforming for supplying molten carbonate fuel cells , 2013 .

[18]  M. Dassisti,et al.  Advances in stationary and portable fuel cell applications , 2016 .

[19]  G. Olah,et al.  Effect of the thickness of the anode electrode catalyst layers on the performance in direct methanol fuel cells , 2017 .

[20]  Inmaculada Ortiz,et al.  Progress in the use of ionic liquids as electrolyte membranes in fuel cells , 2014 .

[21]  Ibrahim Dincer,et al.  Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production , 2014 .

[22]  B. Conway,et al.  Mathematical model for a direct propane phosphoric acid fuel cell , 2006 .

[23]  Anil Verma,et al.  Direct use of alcohols and sodium borohydride as fuel in an alkaline fuel cell , 2005 .

[24]  S. Frangini,et al.  Molten carbonates for advanced and sustainable energy applications: Part II. Review of recent literature , 2016 .

[25]  T. Leo 4.09 – Molten Carbonate Fuel Cells: Theory and Application , 2012 .

[26]  Erich Gülzow,et al.  Alkaline fuel cells: a critical view , 1996 .

[27]  C. Rayment,et al.  Introduction to Fuel Cell Technology , 2003 .

[28]  Nigel P. Brandon,et al.  An improved cathode for alkaline fuel cells , 2010 .

[29]  S. O. Mert,et al.  Exergoeconomic analysis of a direct formic acid fuel cell system , 2016 .

[30]  Xiaohang Chen,et al.  Maximum power output and load matching of a phosphoric acid fuel cell-thermoelectric generator hybrid system , 2015 .

[31]  A. M. Férriz,et al.  Reducing environmental impacts of the ups system based on PEM fuel cell with circular economy , 2018, Energy.

[32]  Marc A. Rosen,et al.  Process development and exergy cost sensitivity analysis of a hybrid molten carbonate fuel cell power plant and carbon dioxide capturing process , 2017 .

[33]  Ibrahim Dincer,et al.  Energy and exergy analyses of an ethanol-fueled solid oxide fuel cell for a trigeneration system , 2015 .

[34]  M. Godjevac,et al.  A thermodynamic comparison of solid oxide fuel cell-combined cycles , 2018, Journal of Power Sources.

[35]  V. Vishnyakov Proton exchange membrane fuel cells , 2006 .

[36]  Haisheng Chen,et al.  Progress in electrical energy storage system: A critical review , 2009 .

[37]  Hongwei Zhang,et al.  Recent development of polymer electrolyte membranes for fuel cells. , 2012, Chemical reviews.

[38]  José Manuel Andújar,et al.  Fuel cells: History and updating. A walk along two centuries , 2009 .

[39]  J. A. Calles,et al.  Hydrogen production by ethanol steam reforming over Cu–Ni supported catalysts , 2007 .

[40]  Ned Djilali,et al.  An assessment of alkaline fuel cell technology , 2002 .

[41]  B. Cook,et al.  Introduction to fuel cells and hydrogen technology , 2002 .

[42]  Umberto Lucia,et al.  Overview on fuel cells , 2014 .

[43]  W. Mohamed,et al.  Hydrogen preheating through waste heat recovery of an open-cathode PEM fuel cell leading to power output improvement , 2016 .

[44]  G. Acres,et al.  Recent advances in fuel cell technology and its applications , 2001 .

[45]  Stefano Cordiner,et al.  Review of the micro-tubular solid oxide fuel cell: Part I. Stack design issues and research activities , 2009 .

[46]  A. Boudghene Stambouli,et al.  Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy , 2002 .

[47]  M Himabindu,et al.  Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 2 – Well-to-wheels analysis , 2016 .

[48]  Gregor Hoogers,et al.  Fuel Cell Technology Handbook , 2002 .

[49]  J. Ledesma-García,et al.  A pulsed laser synthesis of nanostructured bi-layer platinum-silver catalyst for methanol-tolerant oxygen reduction reaction , 2017 .

[51]  A. Moreno-Zuria,et al.  Nanostructured Mn2O3/Pt/CNTs selective electrode for oxygen reduction reaction and methanol tolerance in mixed-reactant membraneless micro-DMFC , 2019, Electrochimica Acta.

[52]  Mohammad Ali Abdelkareem,et al.  Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells , 2019, Renewable Energy.

[53]  Nigel M. Sammes,et al.  Phosphoric acid fuel cells: Fundamentals and applications , 2004 .

[54]  T. Taner Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations , 2018 .

[55]  S. Freni,et al.  Bio-ethanol, a suitable fuel to produce hydrogen for a molten carbonate fuel cell , 2007 .

[56]  Jung-Ho Wee,et al.  Which type of fuel cell is more competitive for portable application: Direct methanol fuel cells or direct borohydride fuel cells? , 2006 .

[57]  A. Faghri,et al.  Exergy analysis of a passive direct methanol fuel cell , 2011 .

[58]  M. Farooque,et al.  FUEL CELLS – MOLTEN CARBONATE FUEL CELLS | Modeling , 2009 .

[59]  Hongbin Zhao,et al.  Thermodynamic performance study of the integrated MR-SOFC-CCHP system , 2018 .

[60]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[61]  Oa Us Epa Sources of Greenhouse Gas Emissions , 2015 .

[62]  S. Haile Fuel cell materials and components , 2003 .

[63]  L. Niedrach The Performance of Hydrocarbons in Ion Exchange Membrane Fuel Cells , 1962 .

[64]  T. Kuwabara FUEL CELLS – PHOSPHORIC ACID FUEL CELLS | Cathodes , 2009 .

[65]  S. Rowshanzamir,et al.  Review of the proton exchange membranes for fuel cell applications , 2010 .

[66]  Junye Wang,et al.  Barriers of scaling-up fuel cells: Cost, durability and reliability , 2015 .

[67]  A. Al-Othman,et al.  Graphene oxide — Nafion composite membrane for effective methanol crossover reduction in passive direct methanol fuel cells , 2018, 2018 5th International Conference on Renewable Energy: Generation and Applications (ICREGA).

[68]  Fahad S. Al-Mubaddel,et al.  New electrooxidation characteristic for Ni-based electrodes for wide application in methanol fuel cells , 2018 .

[69]  Hassan Fathabadi,et al.  Novel fuel cell/battery/supercapacitor hybrid power source for fuel cell hybrid electric vehicles , 2018 .

[70]  J. Lakeman,et al.  A Novel Direct Carbon Fuel Cell Concept , 2007 .

[71]  J. Yin,et al.  Significant improvement of electrooxidation performance of carbon in molten carbonates by the introduction of transition metal oxides , 2013 .

[72]  Shigenori Mitsushima,et al.  Exergy analysis of polymer electrolyte fuel cell systems using methanol , 2004 .

[73]  Kristina Haraldsson,et al.  A first report on the attitude towards hydrogen fuel cell buses in Stockholm , 2006 .

[74]  F. R. Foulkes,et al.  Fuel Cell Handbook , 1989 .

[75]  Robert J. Kee,et al.  Solid-oxide fuel cells with hydrocarbon fuels , 2005 .

[76]  Suha Orçun Mert,et al.  Performance assessment of a direct formic acid fuel cell system through exergy analysis , 2015 .

[77]  S. Basu,et al.  Evaluation of an Alkaline Fuel Cell for Multifuel System , 2004 .

[78]  Ping Liu,et al.  Direct octane fuel cells: A promising power for transportation , 2012 .

[79]  Guiling Wang,et al.  Enhancement of electrooxidation activity of activated carbon for direct carbon fuel cell , 2010 .

[80]  M. Kusnezoff FUEL CELLS – SOLID OXIDE FUEL CELLS | Membranes , 2009 .

[81]  Ya-Ling He,et al.  Exergy flow and energy utilization of direct methanol fuel cells based on a mathematic model , 2008 .

[82]  Ahmad Haddad,et al.  Nonlinear time-variant model of the PEM type fuel cell for automotive applications , 2015, Simul. Model. Pract. Theory.

[83]  Junghui Chen,et al.  Prognostics of PEM fuel cells based on Gaussian process state space models , 2018 .

[84]  B. Sundén,et al.  SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants , 2013 .

[86]  S. J. McPhail,et al.  Molten carbonate fuel cells for CO2 separation and segregation by retrofitting existing plants – An analysis of feasible operating windows and first experimental findings , 2015 .

[87]  Ziyang Hu,et al.  Parametric study of a hybrid system integrating a phosphoric acid fuel cell with an absorption refrigerator for cooling purposes , 2016 .

[88]  E. Antolini Photo-assisted methanol oxidation on Pt-TiO2 catalysts for direct methanol fuel cells: A short review , 2018, Applied Catalysis B: Environmental.

[89]  Mathias Schulze,et al.  Long term investigations of silver cathodes for alkaline fuel cells , 2004 .

[90]  Sudharsan Bharath Low-Temperature Direct Propane Polymer Electrolyte Membrane Fuel Cell (DPFC) , 2006 .

[91]  Nigel P. Brandon,et al.  Review of gas diffusion cathodes for alkaline fuel cells , 2009 .

[92]  B. Etzold,et al.  Towards best practices for improving paper-based microfluidic fuel cells , 2019, Electrochimica Acta.

[93]  A. Juan,et al.  Theoretical and experimental study of methane steam reforming reactions over nickel catalyst , 2007 .

[94]  Jiujun Zhang,et al.  PEM fuel cell electrocatalysts and catalyst layers : fundamentals and applications , 2008 .

[95]  T. J. Kotas,et al.  The Exergy Method of Thermal Plant Analysis , 2012 .

[96]  A. John Appleby,et al.  High-Peak-Power Polymer Electrolyte Membrane Fuel Cells , 2003 .

[97]  Yun Wang,et al.  A review of polymer electrolyte membrane fuel cells: Technology, applications,and needs on fundamental research , 2011 .

[98]  A. Moreno-Zuria,et al.  Design, fabrication and performance of a mixed-reactant membraneless micro direct methanol fuel cell stack , 2017 .

[99]  Ernst Riensche,et al.  Pre-reforming of natural gas in solid oxide fuel-cell systems , 1998 .

[100]  Y. Bourgault,et al.  Computational modeling of a direct propane fuel cell , 2011 .

[101]  Wan Ramli Wan Daud,et al.  PEM fuel cell system control: A review , 2017 .

[102]  S. Ha,et al.  Direct formic acid fuel cells , 2002 .

[103]  Zongping Shao,et al.  Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane , 2016 .

[104]  A. Tremblay,et al.  Proton conductivity and morphology of new composite membranes based on zirconium phosphates, phosphotungstic acid, and silicic acid for direct hydrocarbon fuel cells applications , 2017, Journal of Porous Materials.

[105]  M. Ternan The potential of direct hydrocarbon fuel cells for improving energy efficiency , 2006, 2006 IEEE EIC Climate Change Conference.

[106]  Andrew Dicks,et al.  PEM Fuel Cells: Applications , 2012 .

[107]  J. P. Pereira,et al.  Modeling of passive direct ethanol fuel cells , 2017 .

[108]  G. Molaeimanesh,et al.  A review on microstructure reconstruction of PEM fuel cells porous electrodes for pore scale simulation , 2016 .

[109]  A. Ranjbar,et al.  Thermal investigation of a PEM fuel cell with cooling flow field , 2017 .

[110]  R. Manoharan,et al.  Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid , 1998 .

[111]  D. B. Talange,et al.  Modeling and performance evaluation of PEM fuel cell by controlling its input parameters , 2017 .

[112]  Mohammed Alhassan,et al.  Design of an Alkaline Fuel Cell , 2006 .

[113]  R. Gorte,et al.  Direct hydrocarbon solid oxide fuel cells. , 2004, Chemical reviews.

[114]  A. M. Efstathiou,et al.  Hydrogen Production Technologies: Current State and Future Developments , 2013 .

[115]  A. Kirubakaran,et al.  A review on fuel cell technologies and power electronic interface , 2009 .

[116]  Toshiyuki Momma,et al.  Design and fabrication of pumpless small direct methanol fuel cells for portable applications , 2004 .

[117]  Mohd Roslee Othman,et al.  Improved molten carbonate fuel cell performance via reinforced thin anode , 2012 .

[118]  Saad Mekhilef,et al.  Comparative study of different fuel cell technologies , 2012 .

[119]  Andrew Dicks,et al.  Catalytic aspects of the steam reforming of hydrocarbons in internal reforming fuel cells , 1997 .

[120]  A. Hagiwara FUEL CELL SYSTEMS , 2022 .

[121]  Dc Kitty Nijmeijer,et al.  Anion exchange membranes for alkaline fuel cells: A review , 2011 .

[122]  T. Fuller,et al.  A Historical Perspective of Fuel Cell Technology in the 20th Century , 2002 .

[123]  Paola Costamagna,et al.  Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells , 2001 .

[124]  Mathias Schulze,et al.  LONG TERM OPERATION OF AFC ELECTRODES WITH CO2 CONTAINING GASES , 2004 .

[125]  Yuan Wang,et al.  A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system , 2016 .

[126]  Ali Turan,et al.  Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy , 2019, Energy.

[127]  S. Choudhury Phosphoric Acid Fuel Cell Technology , 2007 .

[128]  S. Basu,et al.  Direct ethanol fuel cells for transport and stationary applications – A comprehensive review , 2015 .

[129]  A. Tremblay,et al.  Petroleum Diesel and Biodiesel Fuels Used in a Direct Hydrocarbon Phosphoric Acid Fuel Cell , 2015 .

[130]  L. Barelli,et al.  Kinetic modelling of molten carbonate fuel cells: Effects of cathode water and electrode materials , 2016 .

[131]  Mogens Bjerg Mogensen,et al.  Conversion of Hydrocarbons in Solid Oxide Fuel Cells , 2003 .

[132]  Michael L. Perry Exploratory fuel-cell research: I. Direct-hydrocarbon polymer-electrolyte fuel cell. II. Mathematical modeling of fuel-cell cathodes , 1996 .

[133]  Weiyu Fan,et al.  Comparison of the exergy efficiency of four power generation systems from methane using fuel cells , 2017 .

[134]  Stefano Cordiner,et al.  The Use of a High Temperature Wind Tunnel for MT-SOFC Testing—Part I: Detailed Experimental Temperature Measurement of an MT-SOFC Using an Avant-Garde High Temperature Wind Tunnel and Various Measurement Techniques , 2010 .

[135]  Nguyen Q. Minh,et al.  Solid oxide fuel cell technology—features and applications , 2004 .

[136]  B. Peppley,et al.  Zirconium phosphate as the proton conducting material in direct hydrocarbon polymer electrolyte membrane fuel cells operating above the boiling point of water , 2010 .

[137]  M. S. Masdar,et al.  Critical challenges in the system development of direct alcohol fuel cells as portable power supplies: An overview , 2019, International Journal of Hydrogen Energy.

[138]  Omar Z. Sharaf,et al.  An overview of fuel cell technology: Fundamentals and applications , 2014 .

[139]  A. Jimoh,et al.  Theoretical Energy and Exergy Analyses of Direct Methanol Fuel Cell , 2015 .

[140]  Tae-Hoon Lim,et al.  Electrolyte effect on the catalytic performance of Ni-based catalysts for direct internal reforming molten carbonate fuel cell , 2010 .

[141]  Viktor Hacker,et al.  Alkaline fuel cells applications , 2000 .

[142]  L. Zhuang,et al.  A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages , 2003 .

[143]  M. Ternan,et al.  Propane Fuel Cells: Selectivity for Partial or Complete Reaction , 2014 .

[144]  L. An,et al.  Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production , 2016 .

[145]  T. Murahashi FUEL CELLS – PHOSPHORIC ACID FUEL CELLS | Electrolytes , 2009 .

[146]  Y. Bourgault,et al.  Direct Propane Fuel Cell Anode with Interdigitated Flow Fields: Two-Dimensional Model , 2010 .