Structure of the type VI secretion system TssK–TssF–TssG baseplate subcomplex revealed by cryo-electron microscopy

[1]  P. Leiman,et al.  Contractile injection systems of bacteriophages and related systems , 2018, Molecular microbiology.

[2]  C. Cambillau,et al.  Towards a complete structural deciphering of Type VI secretion system. , 2018, Current opinion in structural biology.

[3]  E. Lindahl,et al.  Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION , 2018, bioRxiv.

[4]  Conrad C. Huang,et al.  UCSF ChimeraX: Meeting modern challenges in visualization and analysis , 2018, Protein science : a publication of the Protein Society.

[5]  H. Stahlberg,et al.  Cryo‐EM reconstruction of Type VI secretion system baseplate and sheath distal end , 2017, The EMBO journal.

[6]  C. Cambillau,et al.  TssA: The cap protein of the Type VI secretion system tail , 2017, BioEssays : news and reviews in molecular, cellular and developmental biology.

[7]  H. Stahlberg,et al.  Cryo-EM structure of the extended type VI secretion system sheath–tube complex , 2017, Nature Microbiology.

[8]  M. Horn,et al.  In situ architecture, function, and evolution of a contractile injection system , 2017, Science.

[9]  Marek Basler,et al.  The type VI secretion system sheath assembles at the end distal from the membrane anchor , 2017, Nature Communications.

[10]  A. Desmyter,et al.  Type VI secretion TssK baseplate protein exhibits structural similarity with phage receptor-binding proteins and evolved to bind the membrane complex , 2017, Nature Microbiology.

[11]  Frank DiMaio,et al.  RosettaES: a sampling strategy enabling automated interpretation of difficult cryo-EM maps , 2017, Nature Methods.

[12]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[13]  Davi R. Ortega,et al.  In vivo structures of an intact type VI secretion system revealed by electron cryotomography , 2017, bioRxiv.

[14]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[15]  Georgios A. Pavlopoulos,et al.  Protein structure determination using metagenome sequence data , 2017, Science.

[16]  D. Goodlett,et al.  Secreted Effectors Encoded within and outside of the Francisella Pathogenicity Island Promote Intramacrophage Growth. , 2016, Cell host & microbe.

[17]  E. Cascales,et al.  Molecular Dissection of the Interface between the Type VI Secretion TssM Cytoplasmic Domain and the TssG Baseplate Component. , 2016, Journal of molecular biology.

[18]  A. Walls,et al.  Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryo‐electron microscopy , 2016, Protein science : a publication of the Protein Society.

[19]  H. Stahlberg,et al.  Structure of the T4 baseplate and its function in triggering sheath contraction , 2016, Nature.

[20]  Frank DiMaio,et al.  Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta , 2016, bioRxiv.

[21]  M. Rossmann,et al.  Role of bacteriophage T4 baseplate in regulating assembly and infection , 2016, Proceedings of the National Academy of Sciences.

[22]  C. Cambillau,et al.  Priming and polymerization of a bacterial contractile tail structure , 2016, Nature.

[23]  David E. Kim,et al.  Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta , 2016, Proteins.

[24]  E. Cascales,et al.  The Type VI Secretion TssEFGK-VgrG Phage-Like Baseplate Is Recruited to the TssJLM Membrane Complex via Multiple Contacts and Serves As Assembly Platform for Tail Tube/Sheath Polymerization , 2015, PLoS genetics.

[25]  David E. Kim,et al.  Large-scale determination of previously unsolved protein structures using evolutionary information , 2015, eLife.

[26]  A. Desmyter,et al.  Biogenesis and structure of a type VI secretion membrane core complex , 2015, Nature.

[27]  Kai Zhang,et al.  Gctf: Real-time CTF determination and correction , 2015, bioRxiv.

[28]  Z. Zhou,et al.  Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states , 2015, Nature Structural &Molecular Biology.

[29]  Z. Zhou,et al.  Atomic Structure of T6SS Reveals Interlaced Array Essential to Function , 2015, Cell.

[30]  David Baker,et al.  Structure of the Type VI Secretion System Contractile Sheath , 2015, Cell.

[31]  Matthias J. Brunner,et al.  Atomic accuracy models from 4.5 Å cryo-electron microscopy data with density-guided iterative local refinement , 2015, Nature Methods.

[32]  A. Prescott,et al.  Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK–TssFG subcomplex , 2014, The Biochemical journal.

[33]  R. Henderson,et al.  High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy☆ , 2013, Ultramicroscopy.

[34]  A. Steven,et al.  One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. , 2013, Journal of structural biology.

[35]  David Baker,et al.  High-resolution comparative modeling with RosettaCM. , 2013, Structure.

[36]  J. Mekalanos,et al.  PAAR-repeat proteins sharpen and diversify the Type VI secretion system spike , 2013, Nature.

[37]  C. Cambillau,et al.  TssK Is a Trimeric Cytoplasmic Protein Interacting with Components of Both Phage-like and Membrane Anchoring Complexes of the Type VI Secretion System* , 2013, The Journal of Biological Chemistry.

[38]  Thomas A. Hopf,et al.  Protein structure prediction from sequence variation , 2012, Nature Biotechnology.

[39]  Shaoxia Chen,et al.  Prevention of overfitting in cryo-EM structure determination , 2012, Nature Methods.

[40]  D. Veesler,et al.  Structure of the phage TP901-1 1.8 MDa baseplate suggests an alternative host adhesion mechanism , 2012, Proceedings of the National Academy of Sciences.

[41]  C. Cambillau,et al.  Structural biology of type VI secretion systems , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[42]  G. Jensen,et al.  Type VI secretion requires a dynamic contractile phage tail-like structure , 2012, Nature.

[43]  Christian Cambillau,et al.  A Common Evolutionary Origin for Tailed-Bacteriophage Functional Modules and Bacterial Machineries , 2011, Microbiology and Molecular Reviews.

[44]  J. Rubinstein,et al.  Phages have adapted the same protein fold to fulfill multiple functions in virion assembly , 2010, Proceedings of the National Academy of Sciences.

[45]  G. Sciara,et al.  Structure of lactococcal phage p2 baseplate and its mechanism of activation , 2010, Proceedings of the National Academy of Sciences.

[46]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[47]  D. Goodlett,et al.  A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. , 2010, Cell host & microbe.

[48]  M Radermacher,et al.  DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. , 2009, Journal of structural biology.

[49]  Christopher Irving,et al.  Appion: an integrated, database-driven pipeline to facilitate EM image processing. , 2009, Journal of structural biology.

[50]  A. Davidson,et al.  The phage λ major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system , 2009, Proceedings of the National Academy of Sciences.

[51]  J. M. Sauder,et al.  Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin , 2009, Proceedings of the National Academy of Sciences.

[52]  E. Cascales The type VI secretion toolkit , 2008, EMBO reports.

[53]  G. Waksman,et al.  Identification, structure and mode of action of a new regulator of the Helicobacter pylori HP0525 ATPase , 2007, The EMBO journal.

[54]  Andrew T. Revel,et al.  Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin , 2007, Proceedings of the National Academy of Sciences.

[55]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[56]  Stephen Lory,et al.  A Virulence Locus of Pseudomonas aeruginosa Encodes a Protein Secretion Apparatus , 2006, Science.

[57]  W. Nelson,et al.  Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Anchi Cheng,et al.  Automated molecular microscopy: the new Leginon system. , 2005, Journal of structural biology.

[59]  Michael G. Rossmann,et al.  Three-Dimensional Rearrangement of Proteins in the Tail of Bacteriophage T4 on Infection of Its Host , 2004, Cell.

[60]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[61]  Fumio Arisaka,et al.  Structure of the cell-puncturing device of bacteriophage T4 , 2002, Nature.

[62]  D. Ladant,et al.  A bacterial two-hybrid system based on a reconstituted signal transduction pathway. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Conrad C. Huang,et al.  Visualizing density maps with UCSF Chimera. , 2007, Journal of structural biology.