Cell models of arrhythmogenic cardiomyopathy: advances and opportunities

ABSTRACT Arrhythmogenic cardiomyopathy is a rare genetic disease that is mostly inherited as an autosomal dominant trait. It is associated predominantly with mutations in desmosomal genes and is characterized by the replacement of the ventricular myocardium with fibrous fatty deposits, arrhythmias and a high risk of sudden death. In vitro studies have contributed to our understanding of the pathogenic mechanisms underlying this disease, including its genetic determinants, as well as its cellular, signaling and molecular defects. Here, we review what is currently known about the pathogenesis of arrhythmogenic cardiomyopathy and focus on the in vitro models that have advanced our understanding of the disease. Finally, we assess the potential of established and innovative cell platforms for elucidating unknown aspects of this disease, and for screening new potential therapeutic agents. This appraisal of in vitro models of arrhythmogenic cardiomyopathy highlights the discoveries made about this disease and the uses of these models for future basic and therapeutic research. Summary: In vitro models of ACM provide insights into the molecular mechanisms of this disease. This reappraisal offers a comprehensive vision of past discoveries and constitutes a tool for future research.

[1]  P. Ellinor,et al.  Arrhythmogenic Right Ventricular , 2010 .

[2]  G. Danieli,et al.  Multiple mutations in desmosomal proteins encoding genes in arrhythmogenic right ventricular cardiomyopathy/dysplasia. , 2010, Heart rhythm.

[3]  A. Angelini,et al.  Arrhythmogenic right ventricular cardiomyopathy. Dysplasia, dystrophy, or myocarditis? , 1996, Circulation.

[4]  A. Wilde,et al.  Desmin mutations as a cause of right ventricular heart failure affect the intercalated disks. , 2010, Heart rhythm.

[5]  J. Saffitz,et al.  Arrhythmogenic right ventricular cardiomyopathy mutations alter shear response without changes in cell-cell adhesion. , 2014, Cardiovascular research.

[6]  W. Birchmeier,et al.  Requirement of plakophilin 2 for heart morphogenesis and cardiac junction formation , 2004, The Journal of cell biology.

[7]  E. Marbán,et al.  c-kit+ Cells Minimally Contribute Cardiomyocytes to the Heart , 2014, Nature.

[8]  M. Link,et al.  Treatment of arrhythmogenic right ventricular cardiomyopathy/dysplasia: an international task force consensus statement , 2015, European heart journal.

[9]  C. H. George,et al.  Ryanodine Receptor Mutations Associated With Stress-Induced Ventricular Tachycardia Mediate Increased Calcium Release in Stimulated Cardiomyocytes , 2003, Circulation research.

[10]  A. Marian,et al.  Nuclear Plakoglobin Is Essential for Differentiation of Cardiac Progenitor Cells to Adipocytes in Arrhythmogenic Right Ventricular Cardiomyopathy , 2011, Circulation research.

[11]  S. Rizzo,et al.  Mouse Models in Arrhythmogenic Right Ventricular Cardiomyopathy , 2012, Front. Physio..

[12]  I. Komuro,et al.  Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. , 2013, The Journal of Biological Chemistry.

[13]  D. Stephan,et al.  Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). , 2001, Human molecular genetics.

[14]  S. Scherer,et al.  Compound and digenic heterozygosity contributes to arrhythmogenic right ventricular cardiomyopathy. , 2010, Journal of the American College of Cardiology.

[15]  X. Wehrens,et al.  Animal models of arrhythmogenic cardiomyopathy , 2009, Disease Models & Mechanisms.

[16]  Kieran Clarke,et al.  iASPP, a previously unidentified regulator of desmosomes, prevents arrhythmogenic right ventricular cardiomyopathy (ARVC)-induced sudden death , 2015, Proceedings of the National Academy of Sciences.

[17]  W. Birchmeier,et al.  Sodium current deficit and arrhythmogenesis in a murine model of plakophilin-2 haploinsufficiency. , 2012, Cardiovascular research.

[18]  W. Zareba,et al.  Evaluation of the Normal Values for Signal‐Averaged Electrocardiogram , 2007, Journal of cardiovascular electrophysiology.

[19]  Shengshou Hu,et al.  RhoA activity increased in myocardium of arrhythmogenic cardiomyopathy patients and affected connexin 43 protein expression in HL-1 cells. , 2015, International journal of clinical and experimental medicine.

[20]  X. Jouven,et al.  Natural History and Risk Stratification of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy , 2004, Circulation.

[21]  Michael D. Schneider,et al.  Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Y. Oade,et al.  Arrhythmogenic right ventricular cardiomyopathy , 2011, BMJ Case Reports.

[23]  M. Varsányi,et al.  ARVC-Related Mutations in Divergent Region 3 Alter Functional Properties of the Cardiac Ryanodine Receptor , 2008, Biophysical journal.

[24]  Philip Wong,et al.  Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy. , 2013, European heart journal.

[25]  P. Ellinor,et al.  Somatic mutations and atrial fibrillation: the end or just the beginning? , 2015, Circulation. Cardiovascular genetics.

[26]  A. Marian,et al.  Cardiac Fibro-Adipocyte Progenitors Express Desmosome Proteins and Preferentially Differentiate to Adipocytes Upon Deletion of the Desmoplakin Gene. , 2016, Circulation research.

[27]  Brian R. Anderson,et al.  Genetic Variation in Titin in Arrhythmogenic Right Ventricular Cardiomyopathy–Overlap Syndromes , 2011, Circulation.

[28]  D. Romberger,et al.  Transforming growth factor-beta stimulates the expression of desmosomal proteins in bronchial epithelial cells. , 1992, American journal of respiratory cell and molecular biology.

[29]  E. Gao,et al.  Loss of Cadherin-Binding Proteins β-Catenin and Plakoglobin in the Heart Leads to Gap Junction Remodeling and Arrhythmogenesis , 2012, Molecular and Cellular Biology.

[30]  G. Guerrero-Serna,et al.  Loss of Plakophilin-2 Expression Leads to Decreased Sodium Current and Slower Conduction Velocity in Cultured Cardiac Myocytes , 2009, Circulation Research.

[31]  M. Davies,et al.  Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. , 1997, Journal of the American College of Cardiology.

[32]  R. Lucariello,et al.  Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC/D): A Systematic Literature Review , 2013, Clinical Medicine Insights. Cardiology.

[33]  P. Syrris,et al.  Genetics of Right Ventricular Cardiomyopathy , 2005, Journal of cardiovascular electrophysiology.

[34]  W. Franke,et al.  The area composita of adhering junctions connecting heart muscle cells of vertebrates. V. The importance of plakophilin-2 demonstrated by small interference RNA-mediated knockdown in cultured rat cardiomyocytes. , 2008, European journal of cell biology.

[35]  E. Behr,et al.  The nonlinear structure of the desmoplakin plakin domain and the effects of cardiomyopathy-linked mutations. , 2011, Journal of molecular biology.

[36]  A. Saguner,et al.  Arrhythmogenic ventricular cardiomyopathy: A paradigm shift from right to biventricular disease. , 2014, World journal of cardiology.

[37]  M. Delmar,et al.  Arrhythmogenic cardiomyopathy and Brugada syndrome: Diseases of the connexome , 2014, FEBS letters.

[38]  L. Godsel,et al.  Plakophilins: multifunctional scaffolds for adhesion and signaling. , 2009, Current opinion in cell biology.

[39]  P. Nallari,et al.  Comparison of Uhl's anomaly, right ventricular outflow tract ventricular tachycardia (RVOT VT) & arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) with an insight into genetics of ARVD/C. , 2010, The Indian journal of medical research.

[40]  C. Simone,et al.  Clinical and Functional Characterization of a Novel Mutation in Lamin A/C Gene in a Multigenerational Family with Arrhythmogenic Cardiac Laminopathy , 2015, PloS one.

[41]  J. Towbin,et al.  Genetics of arrhythmogenic right ventricular cardiomyopathy: a practical guide for physicians. , 2013, Journal of the American College of Cardiology.

[42]  G. Lanfranchi,et al.  Missense mutations in Desmocollin-2 N-terminus, associated with arrhythmogenic right ventricular cardiomyopathy, affect intracellular localization of desmocollin-2 in vitro , 2007, BMC Medical Genetics.

[43]  Ferhaan Ahmad,et al.  Functional effects of the TMEM43 Ser358Leu mutation in the pathogenesis of arrhythmogenic right ventricular cardiomyopathy , 2012, BMC Medical Genetics.

[44]  L. Field,et al.  Atrial natriuretic factor-SV40 T antigen transgenes produce tumors and cardiac arrhythmias in mice. , 1988, Science.

[45]  Guy Salama,et al.  Sex differences in the mechanisms underlying long QT syndrome. , 2014, American journal of physiology. Heart and circulatory physiology.

[46]  L. Mestroni,et al.  Prognostic predictors in arrhythmogenic right ventricular cardiomyopathy: results from a 10-year registry. , 2011, European heart journal.

[47]  D. Corrado,et al.  Pathophysiology of arrhythmogenic cardiomyopathy , 2012, Nature Reviews Cardiology.

[48]  D. Tester,et al.  Whole exome sequencing with genomic triangulation implicates CDH2‐encoded N‐cadherin as a novel pathogenic substrate for arrhythmogenic cardiomyopathy , 2017, Congenital heart disease.

[49]  Qingbo Xu,et al.  Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. , 2011, Cardiovascular research.

[50]  David Fenyö,et al.  Super-resolution imaging reveals that loss of the C-terminus of connexin43 limits microtubule plus-end capture and NaV1.5 localization at the intercalated disc. , 2014, Cardiovascular research.

[51]  N J Izzo,et al.  HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[52]  H. Calkins,et al.  Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs , 2012, Nature.

[53]  Wojciech Zareba,et al.  Diagnosis of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: Proposed Modification of the Task Force Criteria , 2010, European heart journal.

[54]  M. Delmar,et al.  Desmosomes and the sodium channel complex: implications for arrhythmogenic cardiomyopathy and Brugada syndrome. , 2014, Trends in cardiovascular medicine.

[55]  C. Antzelevitch,et al.  Is there an overlap between Brugada syndrome and arrhythmogenic right ventricular cardiomyopathy/dysplasia? , 2005, Journal of electrocardiology.

[56]  C. Macrae Cardiac arrhythmia: in vivo screening in the zebrafish to overcome complexity in drug discovery , 2010, Expert opinion on drug discovery.

[57]  M. Borggrefe,et al.  [Cardiac MR imaging in arrhythmogenic heart diseases]. , 2007, Der Radiologe.

[58]  G. d’Amati,et al.  Myocyte transdifferentiation: a possible pathogenetic mechanism for arrhythmogenic right ventricular cardiomyopathy. , 2000, Archives of pathology & laboratory medicine.

[59]  Sean Connors,et al.  Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. , 2008, American journal of human genetics.

[60]  J. Svendsen,et al.  New population-based exome data are questioning the pathogenicity of previously cardiomyopathy-associated genetic variants , 2013, European Journal of Human Genetics.

[61]  R. Hauer,et al.  Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: evidence supporting the concept of arrhythmogenic cardiomyopathy , 2012, European journal of heart failure.

[62]  D. Corrado,et al.  Sudden death in young competitive athletes: clinicopathologic correlations in 22 cases. , 1990, The American journal of medicine.

[63]  Douglas P. Zipes,et al.  Role of the Autonomic Nervous System in Modulating Cardiac Arrhythmias , 2014, Circulation research.

[64]  Michael D. Schneider,et al.  Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. , 2006, The Journal of clinical investigation.

[65]  W. Pu,et al.  Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. , 2008, Biochemical and biophysical research communications.

[66]  A. Marian,et al.  The Hippo Pathway Is Activated and Is a Causal Mechanism for Adipogenesis in Arrhythmogenic Cardiomyopathy , 2014, Circulation research.

[67]  G. Danieli,et al.  Clinical profile and long-term follow-up of 37 families with arrhythmogenic right ventricular cardiomyopathy. , 2000, Journal of the American College of Cardiology.

[68]  S. Priori,et al.  Missense Mutations in Plakophilin-2 Cause Sodium Current Deficit and Associate With a Brugada Syndrome Phenotype , 2014, Circulation.

[69]  P. Lambiase,et al.  Electrophysiological abnormalities precede overt structural changes in arrhythmogenic right ventricular cardiomyopathy due to mutations in desmoplakin-A combined murine and human study , 2012, European heart journal.

[70]  S. Olsson,et al.  A long term follow up of 15 patients with arrhythmogenic right ventricular dysplasia. , 1987, British heart journal.

[71]  J. Saffitz,et al.  Mechanistic insights into arrhythmogenic right ventricular cardiomyopathy caused by desmocollin-2 mutations , 2010, Cardiovascular research.

[72]  H. Calkins,et al.  Identification of a New Modulator of the Intercalated Disc in a Zebrafish Model of Arrhythmogenic Cardiomyopathy , 2014, Science Translational Medicine.

[73]  A. Chin,et al.  Arrhythmogenic right ventricular cardiomyopathy/Dysplasia (ARVC/D) , 2013, American journal of medical genetics. Part C, Seminars in medical genetics.

[74]  Rohan M. Modi,et al.  Silencing of desmoplakin decreases connexin43/Nav1.5 expression and sodium current in HL‑1 cardiomyocytes. , 2013, Molecular medicine reports.

[75]  J. D. de Bakker,et al.  Reduced heterogeneous expression of Cx43 results in decreased Nav1.5 expression and reduced sodium current that accounts for arrhythmia vulnerability in conditional Cx43 knockout mice. , 2012, Heart rhythm.

[76]  J. Towbin,et al.  The detection of cardiotropic viruses in the myocardium of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. , 2002, Journal of the American College of Cardiology.

[77]  Andrea Berruezo,et al.  Síndrome de Brugada y embarazo: indagando en el papel de las hormonas sexuales en las canalopatías iónicas , 2014 .

[78]  C. Long,et al.  The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. , 2005, Annual review of pharmacology and toxicology.

[79]  Hugh Calkins,et al.  A new diagnostic test for arrhythmogenic right ventricular cardiomyopathy. , 2008, The New England journal of medicine.

[80]  H. Calkins,et al.  Characterizing the Molecular Pathology of Arrhythmogenic Cardiomyopathy in Patient Buccal Mucosa Cells , 2016, Circulation. Arrhythmia and electrophysiology.

[81]  G. Thiene,et al.  Arrhythmogenic Cardiomyopathy: Transgenic Animal Models Provide Novel Insights Into Disease Pathobiology , 2011, Circulation. Cardiovascular genetics.

[82]  G. Breithardt,et al.  Abnormalities of cardiac sympathetic innervation in arrhythmogenic right ventricular cardiomyopathy : quantitative assessment of presynaptic norepinephrine reuptake and postsynaptic beta-adrenergic receptor density with positron emission tomography. , 2000, Circulation.

[83]  R. Windoffer,et al.  Desmoglein 2 mutant mice develop cardiac fibrosis and dilation , 2011, Basic Research in Cardiology.

[84]  G. Scarano,et al.  High frequency of copy number imbalances in Rubinstein–Taybi patients negative to CREBBP mutational analysis , 2010, European Journal of Human Genetics.

[85]  M. Pesce,et al.  C-kit+ cardiac progenitors exhibit mesenchymal markers and preferential cardiovascular commitment. , 2011, Cardiovascular research.

[86]  B. Benito,et al.  Brugada syndrome and pregnancy: delving into the role of sex hormones in ion channelopathies. , 2014, Revista espanola de cardiologia.

[87]  G. Radice,et al.  Cardiac Tissue-Restricted Deletion of Plakoglobin Results in Progressive Cardiomyopathy and Activation of β-Catenin Signaling , 2011, Molecular and Cellular Biology.

[88]  D. Corrado,et al.  Arrhythmogenic right ventricular cardiomyopathy and sports activity. , 2015, European heart journal.

[89]  S. Taffet,et al.  Plakophilin-2 and the migration, differentiation and transformation of cells derived from the epicardium of neonatal rat hearts , 2011, Cell communication & adhesion.

[90]  P. Syrris,et al.  Desmoglein-2 interaction is crucial for cardiomyocyte cohesion and function. , 2014, Cardiovascular research.

[91]  A. Crosby,et al.  Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease) , 2000, The Lancet.

[92]  S. Scherer,et al.  Abnormal connexin43 in arrhythmogenic right ventricular cardiomyopathy caused by plakophilin-2 mutations , 2008, Journal of cellular and molecular medicine.

[93]  H. Uhl A previously undescribed congenital malformation of the heart: almost total absence of the myocardium of the right ventricle. , 1952, Bulletin of the Johns Hopkins Hospital.

[94]  R. Virmani,et al.  Arrhythmogenic right ventricular cardiomyopathy and fatty replacement of the right ventricular myocardium: are they different diseases? , 1998, Circulation.

[95]  Fumihiro Sanada,et al.  Dissecting the Molecular Relationship Among Various Cardiogenic Progenitor Cells , 2013, Circulation research.

[96]  R Frank,et al.  Right Ventricular Dysplasia: A Report of 24 Adult Cases , 1982, Circulation.

[97]  M. Swertz,et al.  The ARVD/C Genetic Variants Database: 2014 Update , 2015, Human mutation.

[98]  Paco Hulpiau,et al.  Mutations in the area composita protein αT-catenin are associated with arrhythmogenic right ventricular cardiomyopathy. , 2013, European heart journal.

[99]  M. Borggrefe,et al.  Kardiale MRT in der Diagnostik arrhythmogener Herzerkrankungen , 2007, Der Radiologe.

[100]  Richard P Davis,et al.  Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies , 2017, Disease Models & Mechanisms.

[101]  D. Kelsell,et al.  Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. , 2000, Human molecular genetics.

[102]  J. Chambers,et al.  Mutational Heterogeneity, Modifier Genes, and Environmental Influences Contribute to Phenotypic Diversity of Arrhythmogenic Cardiomyopathy , 2010, Circulation. Cardiovascular genetics.

[103]  S. Russell,et al.  Risk Stratification in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy–Associated Desmosomal Mutation Carriers , 2012, Circulation. Arrhythmia and electrophysiology.

[104]  G. Lanfranchi,et al.  The p . A 897 KfsX 4 frameshift variation in Desmocollin-2 is not a causative mutation in arrhythmogenic right ventricular cardiomyopathy , 2019 .

[105]  D. Corrado,et al.  Arrhythmogenic right ventricular cardiomyopathy/dysplasia: clinical impact of molecular genetic studies. , 2006, Circulation.

[106]  Gian Antonio Danieli,et al.  Regulatory mutations in transforming growth factor-beta3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. , 2005, Cardiovascular Research.

[107]  R. Schwartz,et al.  Genetic Fate Mapping Identifies Second Heart Field Progenitor Cells As a Source of Adipocytes in Arrhythmogenic Right Ventricular Cardiomyopathy , 2009, Circulation research.

[108]  B. Gerull Skin-heart connection: what can the epidermis tell us about the myocardium in arrhythmogenic cardiomyopathy? , 2014, Circulation. Cardiovascular genetics.

[109]  Dudley J Pennell,et al.  Left-dominant arrhythmogenic cardiomyopathy: an under-recognized clinical entity. , 2008, Journal of the American College of Cardiology.

[110]  D. Torella,et al.  Adult Cardiac Stem Cells Are Multipotent and Support Myocardial Regeneration , 2003, Cell.

[111]  C. Ackerley,et al.  TMEM43 Mutation p.S358L Alters Intercalated Disc Protein Expression and Reduces Conduction Velocity in Arrhythmogenic Right Ventricular Cardiomyopathy , 2014, PloS one.

[112]  D. Corrado,et al.  Arrhythmogenic right ventricular cardiomyopathy: what's in a name? From a congenital defect (dysplasia) to a genetically determined cardiomyopathy (dystrophy). , 2010, The American journal of cardiology.

[113]  Esther Zorio,et al.  Miocardiopatía arritmogénica con afectación predominante del ventrículo izquierdo por una mutación nueva «sin sentido» en desmoplaquina , 2011 .

[114]  L. Gepstein,et al.  Modeling of Arrhythmogenic Right Ventricular Cardiomyopathy With Human Induced Pluripotent Stem Cells , 2013, Circulation. Cardiovascular genetics.

[115]  M. Maleki,et al.  Autosomal Recessive Nonsyndromic Arrhythmogenic Right Ventricular Cardiomyopathy without Cutaneous Involvements: A Novel Mutation , 2017, Annals of human genetics.

[116]  W. Haverkamp,et al.  Molecular Insights into Arrhythmogenic Right Ventricular Cardiomyopathy Caused by Plakophilin-2 Missense Mutations , 2012, Circulation. Cardiovascular genetics.

[117]  H. Musa,et al.  Connexin43 Remodeling Caused by Inhibition of Plakophilin-2 Expression in Cardiac Cells , 2007, Circulation research.

[118]  P. Bross,et al.  Truncating Plakophilin-2 Mutations in Arrhythmogenic Cardiomyopathy Are Associated With Protein Haploinsufficiency in Both Myocardium and Epidermis , 2014, Circulation. Cardiovascular genetics.

[119]  P. Syrris,et al.  [Left dominant arrhythmogenic cardiomyopathy caused by a novel nonsense mutation in desmoplakin]. , 2011, Revista espanola de cardiologia.

[120]  G. Thiene,et al.  Arrhythmogenic cardiomyopathy: a biventricular disease in search of a cure. , 2013, Heart rhythm.

[121]  G. Schreiner,et al.  B-Type Natriuretic Peptide Exerts Broad Functional Opposition to Transforming Growth Factor-&bgr; in Primary Human Cardiac Fibroblasts: Fibrosis, Myofibroblast Conversion, Proliferation, and Inflammation , 2004, Circulation research.

[122]  T. Edvardsen,et al.  Vigorous physical activity impairs myocardial function in patients with arrhythmogenic right ventricular cardiomyopathy and in mutation positive family members , 2014, European journal of heart failure.

[123]  D. Corrado,et al.  Comparison of clinical features of arrhythmogenic right ventricular cardiomyopathy in men versus women. , 2008, The American journal of cardiology.

[124]  G. Pontone,et al.  Cardiac mesenchymal stromal cells are a source of adipocytes in arrhythmogenic cardiomyopathy , 2015, European heart journal.