Spherical trihedral metallo-borospherenes

[1]  Lai‐Sheng Wang,et al.  Planar B41- and B42- clusters with double-hexagonal vacancies. , 2019, Nanoscale.

[2]  Lai‐Sheng Wang,et al.  La3B14-: an inverse triple-decker lanthanide boron cluster. , 2019, Chemical communications.

[3]  Lai‐Sheng Wang,et al.  Probing the structures and bonding of size-selected boron and doped-boron clusters. , 2019, Chemical Society reviews.

[4]  Lai‐Sheng Wang,et al.  [La(η x -B x )La]- (x = 7-9): a new class of inverse sandwich complexes. , 2019, Chemical science.

[5]  Lai‐Sheng Wang,et al.  [La(ηx-Bx)La]– (x = 7–9): a new class of inverse sandwich complexes† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc05443f , 2019, Chemical science.

[6]  Andreas Hansen,et al.  A diuranium carbide cluster stabilized inside a C80 fullerene cage , 2018, Nature Communications.

[7]  A. Huq,et al.  Structural-Distortion-Driven Magnetic Transformation from Ferro- to Ferrimagnetic Iron Chains in B6 -based Nb6 FeIr6 B8. , 2018, Angewandte Chemie.

[8]  Jun Li,et al.  Observation of highly stable and symmetric lanthanide octa-boron inverse sandwich complexes , 2018, Proceedings of the National Academy of Sciences.

[9]  M. Hersam,et al.  Borophene as a prototype for synthetic 2D materials development , 2018, Nature Nanotechnology.

[10]  Tian Jian,et al.  From planar boron clusters to borophenes and metalloborophenes , 2017 .

[11]  Boniface P. T. Fokwa,et al.  Boron: Enabling Exciting Metal-Rich Structures and Magnetic Properties. , 2017, Accounts of chemical research.

[12]  Jun Li,et al.  TGMin: A global-minimum structure search program based on a constrained basin-hopping algorithm , 2017, Nano Research.

[13]  Lai‐Sheng Wang,et al.  The Planar CoB18 (-) Cluster as a Motif for Metallo-Borophenes. , 2016, Angewandte Chemie.

[14]  Lai‐Sheng Wang,et al.  Photoelectron spectroscopy of size-selected boron clusters: from planar structures to borophenes and borospherenes , 2016 .

[15]  Kehui Wu,et al.  Experimental realization of two-dimensional boron sheets. , 2015, Nature chemistry.

[16]  Artem R. Oganov,et al.  Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs , 2015, Science.

[17]  Lai‐Sheng Wang,et al.  Cobalt-centred boron molecular drums with the highest coordination number in the CoB16− cluster , 2015, Nature Communications.

[18]  P. Cui,et al.  A multicentre-bonded [ZnI]8 cluster with cubic aromaticity , 2015, Nature Communications.

[19]  Jun Li,et al.  Experimental and theoretical evidence of an axially chiral borospherene. , 2015, ACS nano.

[20]  B. Fokwa,et al.  Unexpected synergy between magnetic iron chains and stacked B6 rings in Nb6Fe(1-x)Ir(6+x)B8. , 2014, Angewandte Chemie.

[21]  Jun Li,et al.  Observation of an all-boron fullerene. , 2014, Nature chemistry.

[22]  Ivan A. Popov,et al.  Understanding Boron Through Size-Selected Clusters: Structure, Chemical Bonding, and Fluxionality , 2014 .

[23]  Lai‐Sheng Wang,et al.  Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. , 2014, Accounts of chemical research.

[24]  Ya-Fan Zhao,et al.  Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets , 2014, Nature Communications.

[25]  Alexander I Boldyrev,et al.  Transition-metal-centered monocyclic boron wheel clusters (M©Bn): a new class of aromatic borometallic compounds. , 2013, Accounts of chemical research.

[26]  Xing Lu,et al.  Current status and future developments of endohedral metallofullerenes. , 2012, Chemical Society reviews.

[27]  Lai‐Sheng Wang,et al.  Aromatic Metal‐Centered Monocyclic Boron Rings: Co@B‐8 and Ru@B‐9. , 2012 .

[28]  Alexander I Boldyrev,et al.  Aromatic metal-centered monocyclic boron rings: Co©B8- and Ru©B9-. , 2011, Angewandte Chemie.

[29]  P. Rogl,et al.  Crystal structure of novel Ni-Zn borides: first observation of a boron-metal nested cage unit: B20Ni6. , 2011, Inorganic chemistry.

[30]  Lai‐Sheng Wang,et al.  All-boron analogues of aromatic hydrocarbons: B17- and B18-. , 2011, The Journal of chemical physics.

[31]  H. Hillebrecht,et al.  Boron: elementary challenge for experimenters and theoreticians. , 2009, Angewandte Chemie.

[32]  Dimitrios G Liakos,et al.  Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis. , 2009, The Journal of chemical physics.

[33]  Artur Michalak,et al.  A Combined Charge and Energy Decomposition Scheme for Bond Analysis. , 2009, Journal of chemical theory and computation.

[34]  Yanming Ma,et al.  Ionic high-pressure form of elemental boron , 2009, Nature.

[35]  Alexander I Boldyrev,et al.  Developing paradigms of chemical bonding: adaptive natural density partitioning. , 2008, Physical chemistry chemical physics : PCCP.

[36]  R. L. Dekock,et al.  Bond multiplicity in transition-metal complexes: applications of two-electron valence indices. , 2008, The journal of physical chemistry. A.

[37]  Xiaobao Yang,et al.  Ab initio prediction of stable boron sheets and boron nanotubes: Structure, stability, and electronic properties , 2008 .

[38]  Sohrab Ismail-Beigi,et al.  Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. , 2007, Physical review letters.

[39]  Anastassia N. Alexandrova,et al.  All-Boron Aromatic Clusters as Potential New Inorganic Ligands and Building Blocks in Chemistry , 2006 .

[40]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[41]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[42]  Jun Li,et al.  Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity , 2003, Nature materials.

[43]  Erik Van Lenthe,et al.  Optimized Slater‐type basis sets for the elements 1–118 , 2003, J. Comput. Chem..

[44]  Jun Li,et al.  Au20: A Tetrahedral Cluster , 2003, Science.

[45]  Evert Jan Baerends,et al.  Molecular calculations of excitation energies and (hyper)polarizabilities with a statistical average of orbital model exchange-correlation potentials , 2000 .

[46]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[47]  Angel Rubio,et al.  New boron based nanostructured materials , 1999 .

[48]  I. Billas,et al.  Cage substitution in metal-fullerene clusters , 1998 .

[49]  W. Lipscomb,et al.  Proposed Boron Nanotubes. , 1998, Inorganic chemistry.

[50]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[51]  I. Dance Ti8C12: Barrierless Transformation of the Th Isomer to the Td Isomer , 1996 .

[52]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[53]  M. Jarrold,et al.  Physical and chemical evidence for metallofullerenes with metal atoms as part of the cage , 1994, Nature.

[54]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[55]  Michael Dolg,et al.  A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds , 1993 .

[56]  K. P. Kerns,et al.  Ti8C12+-Metallo-Carbohedrenes: A New Class of Molecular Clusters? , 1992, Science.

[57]  István Mayer,et al.  Bond orders and valences from ab initio wave functions , 1986 .

[58]  M. Gopinathan,et al.  Valency. I. A quantum chemical definition and properties , 1983 .

[59]  M. Gopinathan,et al.  Valency. I. A quantum chemical definition and properties , 1983 .

[60]  W. Lipscomb The boranes and their relatives. , 1977, Science.