Neuroanatomy of Reward: A View from the Ventral Striatum

[1]  S. Haber,et al.  The Reward Circuit: Linking Primate Anatomy and Human Imaging , 2010, Neuropsychopharmacology.

[2]  Peter Redgrave,et al.  Tectonigral projections in the primate: a pathway for pre‐attentive sensory input to midbrain dopaminergic neurons , 2009, The European journal of neuroscience.

[3]  Suzanne N. Haber,et al.  Anatomy and connectivity of the reward circuit , 2009 .

[4]  L. Tremblay,et al.  Handbook of reward and decision making , 2009 .

[5]  Richard S. J. Frackowiak,et al.  Evidence for Segregated and Integrative Connectivity Patterns in the Human Basal Ganglia , 2008, The Journal of Neuroscience.

[6]  Valeria Della-Maggiore,et al.  Functional integration across a gradient of corticostriatal channels controls UP state transitions in the dorsal striatum , 2008, Proceedings of the National Academy of Sciences.

[7]  Trevor W. Robbins,et al.  High Impulsivity Predicts the Switch to Compulsive Cocaine-Taking , 2008, Science.

[8]  B. Everitt,et al.  Cocaine Seeking Habits Depend upon Dopamine-Dependent Serial Connectivity Linking the Ventral with the Dorsal Striatum , 2008, Neuron.

[9]  P. Kelly,et al.  A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition , 2007, Neuroscience & Biobehavioral Reviews.

[10]  Michael A. Nader,et al.  The effects of cocaine: A shifting target over the course of addiction , 2007, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[11]  Philippe Mailly,et al.  Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action , 2007, The European journal of neuroscience.

[12]  S. Rauch,et al.  Recall of Fear Extinction in Humans Activates the Ventromedial Prefrontal Cortex and Hippocampus in Concert , 2007, Biological Psychiatry.

[13]  O. Hikosaka,et al.  Lateral habenula as a source of negative reward signals in dopamine neurons , 2007, Nature.

[14]  Kyle S. Smith,et al.  Opioid Limbic Circuit for Reward: Interaction between Hedonic Hotspots of Nucleus Accumbens and Ventral Pallidum , 2007, The Journal of Neuroscience.

[15]  P. Redgrave,et al.  A direct projection from superior colliculus to substantia nigra pars compacta in the cat , 2006, Neuroscience.

[16]  Kyle S. Smith,et al.  Ventral pallidum firing codes hedonic reward: when a bad taste turns good. , 2006, Journal of neurophysiology.

[17]  S. Haber,et al.  Reward-Related Cortical Inputs Define a Large Striatal Region in Primates That Interface with Associative Cortical Connections, Providing a Substrate for Incentive-Based Learning , 2006, The Journal of Neuroscience.

[18]  N. Volkow,et al.  Cocaine Cues and Dopamine in Dorsal Striatum: Mechanism of Craving in Cocaine Addiction , 2006, The Journal of Neuroscience.

[19]  Jonathan D. Wallis,et al.  A Comparison of Abstract Rules in the Prefrontal Cortex, Premotor Cortex, Inferior Temporal Cortex, and Striatum , 2006, Journal of Cognitive Neuroscience.

[20]  C. Padoa-Schioppa,et al.  Neurons in the orbitofrontal cortex encode economic value , 2006, Nature.

[21]  S. Haber,et al.  Prefrontal Cortical Projections to the Midbrain in Primates: Evidence for a Sparse Connection , 2006, Neuropsychopharmacology.

[22]  H. Fields,et al.  Inhibitions of Nucleus Accumbens Neurons Encode a Gating Signal for Reward-Directed Behavior , 2006, The Journal of Neuroscience.

[23]  P. Dean,et al.  Output pathways from the rat superior colliculus mediating approach and avoidance have different sensory properties , 2006, Experimental Brain Research.

[24]  Boris S. Gutkin,et al.  Dopamine modulation in the basal ganglia locks the gate to working memory , 2006, Journal of Computational Neuroscience.

[25]  T. Robbins,et al.  Neural systems of reinforcement for drug addiction: from actions to habits to compulsion , 2005, Nature Neuroscience.

[26]  Camelia M. Kuhnen,et al.  The Neural Basis of Financial Risk Taking , 2005, Neuron.

[27]  J. Doyon,et al.  Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  B. Vogt,et al.  Architecture and neurocytology of monkey cingulate gyrus , 2005, The Journal of comparative neurology.

[29]  Yu-Shin Ding,et al.  Behavioral / Systems / Cognitive Activation of Orbital and Medial Prefrontal Cortex by Methylphenidate in Cocaine-Addicted Subjects But Not in Controls : Relevance to Addiction , 2005 .

[30]  J. Mayhew,et al.  How Visual Stimuli Activate Dopaminergic Neurons at Short Latency , 2005, Science.

[31]  N. Volkow,et al.  Unmanageable Motivation in Addiction: A Pathology in Prefrontal-Accumbens Glutamate Transmission , 2005, Neuron.

[32]  E. Miller,et al.  Different time courses of learning-related activity in the prefrontal cortex and striatum , 2005, Nature.

[33]  S. Inati,et al.  An fMRI study of reward-related probability learning , 2005, NeuroImage.

[34]  A. Dickinson,et al.  Prediction Error during Retrospective Revaluation of Causal Associations in Humans fMRI Evidence in Favor of an Associative Model of Learning , 2004, Neuron.

[35]  Saori C. Tanaka,et al.  Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops , 2004, Nature Neuroscience.

[36]  David A Lewis,et al.  Cortical connections of the lateral mediodorsal thalamus in cynomolgus monkeys , 2004, The Journal of comparative neurology.

[37]  Karl J. Friston,et al.  Dissociable Roles of Ventral and Dorsal Striatum in Instrumental Conditioning , 2004, Science.

[38]  M. Roesch,et al.  Neuronal Activity Related to Reward Value and Motivation in Primate Frontal Cortex , 2004, Science.

[39]  Michael A. Nader,et al.  Behavioral/systems/cognitive Cocaine Self-administration Produces a Progressive Involvement of Limbic, Association, and Sensorimotor Striatal Domains , 2022 .

[40]  T. Robbins,et al.  Differential control over cocaine-seeking behavior by nucleus accumbens core and shell , 2004, Nature Neuroscience.

[41]  T. Robbins,et al.  Differential Responses in Human Striatum and Prefrontal Cortex to Changes in Object and Rule Relevance , 2004, The Journal of Neuroscience.

[42]  W. Schultz,et al.  Responses to reward in monkey dorsal and ventral striatum , 2004, Experimental Brain Research.

[43]  E. Welker,et al.  Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolus vulgaris-leucoagglutinin and HRP , 2004, Experimental Brain Research.

[44]  J. Aggleton A description of intra-amygdaloid connections in old world monkeys , 2004, Experimental Brain Research.

[45]  O. Hikosaka,et al.  Neural Correlates of Rewarded and Unrewarded Eye Movements in the Primate Caudate Nucleus , 2003, The Journal of Neuroscience.

[46]  H. Mayberg Positron emission tomography imaging in depression: a neural systems perspective. , 2003, Neuroimaging clinics of North America.

[47]  E. Miller,et al.  Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task , 2003, The European journal of neuroscience.

[48]  Peter Redgrave,et al.  A direct projection from superior colliculus to substantia nigra for detecting salient visual events , 2003, Nature Neuroscience.

[49]  Matthew F S Rushworth,et al.  Functional Specialization within Medial Frontal Cortex of the Anterior Cingulate for Evaluating Effort-Related Decisions , 2003, The Journal of Neuroscience.

[50]  D. V. von Cramon,et al.  Error Monitoring Using External Feedback: Specific Roles of the Habenular Complex, the Reward System, and the Cingulate Motor Area Revealed by Functional Magnetic Resonance Imaging , 2003, The Journal of Neuroscience.

[51]  Wolfram Schultz,et al.  Effects of expectations for different reward magnitudes on neuronal activity in primate striatum. , 2003, Journal of neurophysiology.

[52]  M. Delgado,et al.  Dorsal striatum responses to reward and punishment: Effects of valence and magnitude manipulations , 2003, Cognitive, affective & behavioral neuroscience.

[53]  R. Elliott,et al.  Differential Response Patterns in the Striatum and Orbitofrontal Cortex to Financial Reward in Humans: A Parametric Functional Magnetic Resonance Imaging Study , 2003, The Journal of Neuroscience.

[54]  H. Barbas,et al.  Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey , 2002, Neuroscience.

[55]  W. Schultz Getting Formal with Dopamine and Reward , 2002, Neuron.

[56]  R. Wise Brain Reward Circuitry Insights from Unsensed Incentives , 2002, Neuron.

[57]  Nikolaus R. McFarland,et al.  Thalamic Relay Nuclei of the Basal Ganglia Form Both Reciprocal and Nonreciprocal Cortical Connections, Linking Multiple Frontal Cortical Areas , 2002, The Journal of Neuroscience.

[58]  Richard C Saunders,et al.  Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: Combined anterograde and retrograde tracing study in the Macaque brain , 2002, The Journal of comparative neurology.

[59]  P. Strick,et al.  Basal-ganglia 'projections' to the prefrontal cortex of the primate. , 2002, Cerebral cortex.

[60]  S. Haber,et al.  Amygdaloid projections to ventromedial striatal subterritories in the primate , 2002, Neuroscience.

[61]  Charles J. Wilson,et al.  Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. , 2002, Journal of neurophysiology.

[62]  P. Montague,et al.  Activity in human ventral striatum locked to errors of reward prediction , 2002, Nature Neuroscience.

[63]  O. Hikosaka,et al.  Reward-dependent spatial selectivity of anticipatory activity in monkey caudate neurons. , 2002, Journal of neurophysiology.

[64]  Brian Knutson,et al.  Anticipation of Increasing Monetary Reward Selectively Recruits Nucleus Accumbens , 2001, The Journal of Neuroscience.

[65]  J. Deniau,et al.  Segregation and Convergence of Information Flow through the Cortico-Subthalamic Pathways , 2001, The Journal of Neuroscience.

[66]  S. Haber,et al.  Bed nucleus of the stria terminalis and extended amygdala inputs to dopamine subpopulations in primates , 2001, Neuroscience.

[67]  W. Schultz,et al.  Influence of expectation of different rewards on behavior-related neuronal activity in the striatum. , 2001, Journal of neurophysiology.

[68]  T. Paus Primate anterior cingulate cortex: Where motor control, drive and cognition interface , 2001, Nature Reviews Neuroscience.

[69]  J. Fuster The Prefrontal Cortex—An Update Time Is of the Essence , 2001, Neuron.

[70]  A. Grace,et al.  Regulation of Limbic Information Outflow by the Subthalamic Nucleus: Excitatory Amino Acid Projections to the Ventral Pallidum , 2001, The Journal of Neuroscience.

[71]  Nikolaus R. McFarland,et al.  Organization of thalamostriatal terminals from the ventral motor nuclei in the macaque , 2001, The Journal of comparative neurology.

[72]  W. Schultz Multiple reward signals in the brain , 2000, Nature Reviews Neuroscience.

[73]  J. Price,et al.  Prefrontal cortical projections to the striatum in macaque monkeys: Evidence for an organization related to prefrontal networks , 2000, The Journal of comparative neurology.

[74]  Nikolaus R. McFarland,et al.  Convergent Inputs from Thalamic Motor Nuclei and Frontal Cortical Areas to the Dorsal Striatum in the Primate , 2000, The Journal of Neuroscience.

[75]  S. Haber,et al.  The central nucleus of the amygdala projection to dopamine subpopulations in primates , 2000, Neuroscience.

[76]  W. Schultz,et al.  Reward-related neuronal activity during go-nogo task performance in primate orbitofrontal cortex. , 2000, Journal of neurophysiology.

[77]  Nikolaus R. McFarland,et al.  Striatonigrostriatal Pathways in Primates Form an Ascending Spiral from the Shell to the Dorsolateral Striatum , 2000, The Journal of Neuroscience.

[78]  J. Hollerman,et al.  Reward processing in primate orbitofrontal cortex and basal ganglia. , 2000, Cerebral cortex.

[79]  E. Ruppin,et al.  Reinforcement-Driven Dimensionality Reduction - A Model for Information Processing in the Basal Ganglia , 2000, Journal of basic and clinical physiology and pharmacology.

[80]  L. Heimer,et al.  Chapter II – The human basal forebrain. Part II , 1999 .

[81]  A. McDonald,et al.  Evidence that dopaminergic axons provide a dense innervation of specific neuronal subpopulations in the rat basolateral amygdala , 1999, Brain Research.

[82]  H. Barbas,et al.  Medial Prefrontal Cortices Are Unified by Common Connections With Superior Temporal Cortices and Distinguished by Input From Memory‐Related Areas in the Rhesus Monkey , 1999, The Journal of comparative neurology.

[83]  C. Darian‐Smith,et al.  Comparing thalamocortical and corticothalamic microstructure and spatial reciprocity in the macaque ventral posterolateral nucleus (VPLc) and medial pulvinar , 1999, The Journal of comparative neurology.

[84]  Nikolaus R. McFarland,et al.  The Concept of the Ventral Striatum in Nonhuman Primates , 1999, Annals of the New York Academy of Sciences.

[85]  P. Goldman-Rakic,et al.  The primate mesocortical dopamine system , 1999 .

[86]  Martin Deschênes,et al.  The organization of corticothalamic projections: reciprocity versus parity , 1998, Brain Research Reviews.

[87]  D. Amaral,et al.  Organization of the intrinsic connections of the monkey amygdaloid complex: Projections originating in the lateral nucleus , 1998, The Journal of comparative neurology.

[88]  O. Hikosaka,et al.  Differential Roles of the Frontal Cortex, Basal Ganglia, and Cerebellum in Visuomotor Sequence Learning , 1998, Neurobiology of Learning and Memory.

[89]  E. Jones Chapter I - The thalamus of primates , 1998 .

[90]  Suzanne N. Haber,et al.  Insular Cortical Projections to Functional Regions of the Striatum Correlate with Cortical Cytoarchitectonic Organization in the Primate , 1997, The Journal of Neuroscience.

[91]  K. Kultas‐Ilinsky,et al.  Mode of termination of pallidal afferents to the thalamus: A light and electron microscopic study with anterograde tracers and immunocytochemistry in Macaca mulatta , 1997, The Journal of comparative neurology.

[92]  P. Goldman-Rakic,et al.  Differential Activation of the Caudate Nucleus in Primates Performing Spatial and Nonspatial Working Memory Tasks , 1997, The Journal of Neuroscience.

[93]  G. Percheron,et al.  Three-dimensional morphology and distribution of pallidal axons projecting to both the lateral region of the thalamus and the central complex in primates , 1997, Brain Research.

[94]  J. Bolam,et al.  Synaptic Integration of Functionally Diverse Pallidal Information in the Entopeduncular Nucleus and Subthalamic Nucleus in the Rat , 1997, The Journal of Neuroscience.

[95]  Anders Björklund,et al.  The primate nervous system , 1997 .

[96]  J. Mink THE BASAL GANGLIA: FOCUSED SELECTION AND INHIBITION OF COMPETING MOTOR PROGRAMS , 1996, Progress in Neurobiology.

[97]  Joseph E LeDoux,et al.  Intrinsic connections of the rat amygdaloid complex: Projections originating in the accessory basal nucleus , 1996, The Journal of comparative neurology.

[98]  R. Guillery,et al.  Functional organization of thalamocortical relays. , 1996, Journal of neurophysiology.

[99]  S. Carmichael,et al.  Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys , 1996 .

[100]  S. Haber,et al.  Ventral pallidostriatal pathway in the monkey: Evidence for modulation of basal ganglia circuits , 1996 .

[101]  R. Wise,et al.  Rewarding Actions of Phencyclidine and Related Drugs in Nucleus Accumbens Shell and Frontal Cortex , 1996, The Journal of Neuroscience.

[102]  C. Gerfen,et al.  The frontal cortex-basal ganglia system in primates. , 1996, Critical reviews in neurobiology.

[103]  S. Carmichael,et al.  Networks related to the orbital and medial prefrontal cortex; a substrate for emotional behavior? , 1996, Progress in brain research.

[104]  J. Price,et al.  Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys , 1995, The Journal of comparative neurology.

[105]  J. Price,et al.  Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys , 1995, The Journal of comparative neurology.

[106]  S. Haber,et al.  Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: Comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity , 1995, The Journal of comparative neurology.

[107]  E. Lynd-Balta,et al.  The orbital and medial prefrontal circuit through the primate basal ganglia , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[108]  S de las Heras,et al.  Organization of thalamic projections to the ventral striatum in the primate , 1995, The Journal of comparative neurology.

[109]  H. Barbas,et al.  Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey , 1995, Hippocampus.

[110]  J. Price,et al.  Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey , 1994, The Journal of comparative neurology.

[111]  S. Haber,et al.  Primate striatonigral projections: A comparison of the sensorimotor‐related striatum and the ventral striatum , 1994, The Journal of comparative neurology.

[112]  S. N. Haber,et al.  The organization of midbrain projections to the ventral striatum in the primate , 1994, Neuroscience.

[113]  S. Haber,et al.  The organization of midbrain projections to the striatum in the primate: Sensorimotor-related striatum versus ventral striatum , 1994, Neuroscience.

[114]  A. Flaherty,et al.  Input-output organization of the sensorimotor striatum in the squirrel monkey , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[115]  J. Price,et al.  The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys , 1993, The Journal of comparative neurology.

[116]  H. Barbas,et al.  Organization of cortical afferent input to orbitofrontal areas in the rhesus monkey , 1993, Neuroscience.

[117]  David P. Friedman,et al.  A modality-specific somatosensory area within the insula of the rhesus monkey , 1993, Brain Research.

[118]  S. Haber,et al.  The organization of the descending ventral pallidal projections in the monkey , 1993, The Journal of comparative neurology.

[119]  J. Kaas,et al.  Topography and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys , 1992, The Journal of comparative neurology.

[120]  C. Geula,et al.  Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey , 1992, The Journal of comparative neurology.

[121]  A. Deutch,et al.  Topography and functional role of dopaminergic projections from the ventral mesencephalic tegmentum to the ventral pallidum , 1992, Neuroscience.

[122]  W. Cullinan,et al.  Projections from the nucleus accumbens to cholinergic neurons of the ventral pallidum: a correlated light and electron microscopic double-immunolabeling study in rat , 1992, Brain Research.

[123]  John P. Aggleton,et al.  The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction. , 1992 .

[124]  D. Lewis The catecholaminergic innervation of primate prefrontal cortex. , 1992, Journal of neural transmission. Supplementum.

[125]  H. Barbas,et al.  Architecture and cortical connections of the prefrontal cortex in the rhesus monkey. , 1992, Advances in neurology.

[126]  P. Goldman-Rakic,et al.  Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390 , 1991, Neuroscience.

[127]  A. Parent,et al.  Dopaminergic neurons expressing calbindin in normal and parkinsonian monkeys. , 1991, Neuroreport.

[128]  J. Hedreen,et al.  Organization of striatopallidal, striatonigral, and nigrostriatal projections in the macaque , 1991, The Journal of comparative neurology.

[129]  G. Percheron,et al.  Parallel processing in the basal ganglia: up to a point , 1991, Trends in Neurosciences.

[130]  T. R. Scott,et al.  Gustatory neural coding in the monkey cortex: stimulus intensity. , 1991, Journal of neurophysiology.

[131]  S. Haber,et al.  The relationship between ventral striatal efferent fibers and the distribution of peptide-positive woolly fibers in the forebrain of the rhesus monkey , 1990, Neuroscience.

[132]  P. Goldman-Rakic,et al.  Topographic intermingling of striatonigral and striatopallidal neurons in the rhesus monkey , 1990, The Journal of comparative neurology.

[133]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[134]  E T Rolls,et al.  Gustatory responses of single neurons in the insula of the macaque monkey. , 1990, Journal of neurophysiology.

[135]  S. Haber,et al.  Topographic organization of the ventral striatal efferent projections in the rhesus monkey: An anterograde tracing study , 1990, The Journal of comparative neurology.

[136]  D. Zahm The ventral striatopallidal parts of the basal ganglia in the rat—II. Compartmentation of ventral pallidal efferents , 1989, Neuroscience.

[137]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.

[138]  G. Meyer,et al.  Aggregations of granule cells in the basal forebrain (islands of Calleja): Golgi and cytoarchitectonic study in different mammals, including man , 1989, The Journal of comparative neurology.

[139]  P. Goldman-Rakic,et al.  Connections of the ventral granular frontal cortex of macaques with perisylvian premotor and somatosensory areas: Anatomical evidence for somatic representation in primate frontal association cortex , 1989, The Journal of comparative neurology.

[140]  K. Nakamura,et al.  Contribution of amygdalar and lateral hypothalamic neurons to visual information processing of food and nonfood in monkey , 1989, Physiology & Behavior.

[141]  H Nishijo,et al.  Single neuron responses in amygdala of alert monkey during complex sensory stimulation with affective significance , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[142]  T. Ono,et al.  Topographic distribution of modality-specific amygdalar neurons in alert monkey , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[143]  R. Villalba,et al.  Distribution of enkephalin-immunoreactive nerve fibres and terminals in the region of the nucleus basalis magnocellularis of the rat: a light and electron microscopic study , 1988, Journal of neurocytology.

[144]  D L Rosene,et al.  Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non‐reciprocal connections , 1988, The Journal of comparative neurology.

[145]  H. T. Chang,et al.  Enkephalinergic-cholinergic interaction in the rat globus pallidus: a pre-embedding double-labeling immunocytochemistry study , 1987, Brain Research.

[146]  M. Yukie,et al.  Amygdalofugal and amygdalopetal connections with modality‐specific visual cortical areas in macaques (macaca fuscata, M. mulatta, and M. fascicularis) , 1987, The Journal of comparative neurology.

[147]  T. Beach,et al.  Light microscopic evidence for a substance P-containing innervation of the human nucleus basalis of Meynert , 1987, Brain Research.

[148]  S. Haber Anatomical relationship between the basal ganglia and the basal nucleus of Meynert in human and monkey forebrain. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[149]  D. Amaral,et al.  The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis , 1987, The Journal of comparative neurology.

[150]  David P. Friedman,et al.  Cortical connections of the somatosensory fields of the lateral sulcus of macaques: Evidence for a corticolimbic pathway for touch , 1986, The Journal of comparative neurology.

[151]  M. Kimura The role of primate putamen neurons in the association of sensory stimuli with movement , 1986, Neuroscience Research.

[152]  A. Hopf,et al.  Substance P in the human brain , 1986, Neuroscience.

[153]  S. Bayer,et al.  Neurogenesis in the olfactory tubercle and islands of Calleja in the rat , 1985, International Journal of Developmental Neuroscience.

[154]  P. Goldman-Rakic,et al.  Organization of the nigrothalamocortical system in the rhesus monkey , 1985, The Journal of comparative neurology.

[155]  W. Nauta,et al.  Efferent connections of the ventral pallidum: Evidence of a dual striato pallidofugal pathway , 1985, The Journal of comparative neurology.

[156]  S. Haber,et al.  The comparative distribution of enkephalin, dynorphin and substance P in the human globus pallidus and basal forebrain , 1985, Neuroscience.

[157]  D. Amaral,et al.  The amygdalostriatal projections in the monkey. An anterograde tracing study , 1985, Brain Research.

[158]  P. Goldman-Rakic,et al.  Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[159]  M. Mesulam,et al.  The Insula of Reil in Man and Monkey , 1985 .

[160]  W. Nauta,et al.  Ramifications of the globus pallidus in the rat as indicated by patterns of immunohistochemistry , 1983, Neuroscience.

[161]  André Parent,et al.  Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by flourescence retrograde labeling method , 1982, Brain Research.

[162]  N. Aronin,et al.  Light and electron microscopic localization of immunoreactive Leu- enkephalin in the monkey basal ganglia , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[163]  J W Aldridge,et al.  Sensory-motor processing in the caudate nucleus and globus pallidus: a single-unit study in behaving primates. , 1980, Canadian journal of physiology and pharmacology.

[164]  C. Saper,et al.  Efferent connections of the parabrachial nucleus in the rat , 1980, Brain Research.

[165]  M Mishkin,et al.  Organization of the amygdalopetal projections from modality‐specific cortical association areas in the monkey , 1980, The Journal of comparative neurology.

[166]  J. E. Albano,et al.  Visual-motor function of the primate superior colliculus. , 1980, Annual review of neuroscience.

[167]  J. Szabo Strionigral and Nigrostriatal Connections , 1979 .

[168]  H. Kuypers,et al.  Differential laminar distribution of corticothalamic neurons projecting to the VL and the center median. An HRP study in the cynomolgus monkey , 1978, Brain Research.

[169]  J. A. Ricardo,et al.  Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat , 1978, Brain Research.

[170]  L. Heimer The Olfactory Cortex and the Ventral Striatum , 1978 .

[171]  P. Strick Anatomical analysis of ventrolateral thalamic input to primate motor cortex. , 1976, Journal of neurophysiology.

[172]  M. Carpenter,et al.  Organization of pallidothalamic projections in the rhesus monkey , 1973, The Journal of comparative neurology.

[173]  E. W. Lauer,et al.  Somatovisceral motor patterns in the insula , 1961, The Journal of comparative neurology.

[174]  M. Mishkin,et al.  Comparison of the effects of frontal and caudate lesions on delayed response and alternation in monkeys. , 1960, Journal of comparative and physiological psychology.

[175]  W. Penfield,et al.  The insula; further observations on its function. , 1955, Brain : a journal of neurology.

[176]  James L Olds,et al.  Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. , 1954, Journal of comparative and physiological psychology.