Online minimization of transition systems (extended abstract)

We are given a transition system implicitly through a compact representation and wish to perform simultaneously reachability analysis and minimization without constructing first the whole system graph. We present an algorithm for this problem that applies to general systems, provided we have appropriate primitive operations for manipulating blocks of states and we can determine termination; the number of operations needed to construct the minimal reachable graph is quadratic in the size of this graph. We specialize the method to obtain efficient algorithms for extended finite state machines that apply separable affine transformations on the variables.

[1]  John E. Hopcroft,et al.  An n log n algorithm for minimizing states in a finite automaton , 1971 .

[2]  Joseph Sifakis,et al.  A Unified Approach for Studying the Properties of Transition Systems , 1982, Theor. Comput. Sci..

[3]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[4]  A. P. Sistla,et al.  Automatic verification of finite-state concurrent systems using temporal logic specifications , 1986, TOPL.

[5]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[6]  Amir Pnueli,et al.  Applications of Temporal Logic to the Specification and Verification of Reactive Systems: A Survey of Current Trends , 1986, Current Trends in Concurrency.

[7]  Stanislaw Budkowski,et al.  An Introduction to Estelle: A Specification Language for Distributed Systems , 1987, Comput. Networks.

[8]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[9]  Gerard J. Holzmann,et al.  An improved protocol reachability analysis technique , 1988, Softw. Pract. Exp..

[10]  Olivier Coudert,et al.  Verification of Synchronous Sequential Machines Based on Symbolic Execution , 1989, Automatic Verification Methods for Finite State Systems.

[11]  Deepinder P. Sidhu,et al.  Formal Methods for Protocol Testing: A Detailed Study , 1989, IEEE Trans. Software Eng..

[12]  Nicolas Halbwachs,et al.  Minimal Model Generation , 1990, CAV.

[13]  Bernhard Steffen,et al.  Compositional Minimization of Finite State Systems , 1990, CAV.

[14]  Scott A. Smolka,et al.  CCS expressions, finite state processes, and three problems of equivalence , 1983, PODC '83.

[15]  Gerard J. Holzmann,et al.  Design and validation of protocols , 1990 .

[16]  Rajeev Alur,et al.  Model-checking for real-time systems , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[17]  Edith Cohen,et al.  Improved algorithms for linear inequalities with two variables per inequality , 1991, STOC '91.

[18]  David Lee,et al.  Testing finite state machines , 1991, STOC '91.

[19]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..

[20]  R. BurchJ.,et al.  Symbolic model checking , 1992 .

[21]  Nicolas Halbwachs,et al.  Minimal State Graph Generation , 1992, Sci. Comput. Program..

[22]  Pierre Wolper,et al.  Memory-efficient algorithms for the verification of temporal properties , 1990, Formal Methods Syst. Des..

[23]  Joseph Naor,et al.  Simple and Fast Algorithms for Linear and Integer Programs With Two Variables per Inequality , 1994, SIAM J. Comput..